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Summary: 
The proposed method takes advantage of LASSO regression to select a reduced-complexity polynomial 
model for calibrating nonlinear multisensor systems, while addressing the trade-off between higher ac-
curacy and smaller calibration effort. The method is applied to compensate the nonlinear thermal and 
mechanical cross-sensitivities in a Hall-stress-temperature multisensor system. It enables to (i) reduce 
the calibration effort, measured by the number of model parameters, by a factor of 1.5 within the space 
of 4th-order polynomial models without compromising accuracy or to (ii) improve the accuracy by strate-
gically including higher-order polynomial terms without increasing the number of model parameters. 
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Background 
The model selection for nonlinear multisensor 
systems (MSS) is a crucial task, since the cali-
bration and computational effort grows rapidly 
with increasing model complexity, e.g. polyno-
mial order P and number of sensors in the sys-
tem [1]. Regularization methods such as the 
least absolute shrinkage and selection operator 
(LASSO) regression have been applied to re-
duce model complexity of biomarker data [2] and 
chemical nanosensors [3]. This study demon-
strates how to successfully combine LASSO re-
gression and ordinary least square regression 
(OLSR) in the context of nonlinear MSS calibra-
tion.  

Description of the New Method 
When the LASSO regularization parameter  is 
varied from 0 to 1, the number of calibration pa-
rameters in the multiple polynomial regression of 
MSS calibration data is progressively reduced 
from the full number to zero [4]. At the same time, 
the achievable accuracy progressively worsens, 
since contributing parameters are suppressed. 
However due to statistical variability in sensor 
data, for a given reduced number of parameters, 
LASSO may provide several competing reduced 
models. Evaluating all of them on the calibration 
data from an ensemble of MSS using OLSR al-
lows then to identify the one best suited for mod-
elling the general response of the MSS. Thereby, 
the method allows to strategically address the 
trade-off between model complexity of nonlinear 
MSS and the achieved accuracy. 

Results 
Figure 1 illustrates the procedure for selecting 
the optimal reduced polynomial compensation 
function fcomp allowing to make the sensitivity SH 
of a Hall sensor system independent of temper-
ature T and stress .  

Fig. 1. Schematic diagram of the applied method for 
selecting minimal nos. of calibration parameters. (a) 
Conventional polynomial OLSR calibration of inverse 
Hall sensitivity up to polynomial orders 5 and achieved 
accuracies. (b) Polynomial term selection using 
LASSO illustrated for P = 4; identification of 5 reduced 
polynomial candidates, each with 6 terms. (c) OLSR 
calibration with 6 remaining parameters and (d) sen-
sor accuracy achieved with best LASSO-reduced 4th-
order-models with 3, 6, and 10 remaining parameters. 

E.2 Signal processing and data analysis  
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Figure 2: Optical micrograph of the CMOS Hall-stress-
temperature sensor system designed to measure 
magnetic field B values compensated for temperature 
T and stress . 
For each of 12 samples of MSS (Fig. 2), 88 cali-
bration load cases and 44 test load cases are 
used to validate the procedure. An automated 
measurement setup (Fig. 3) enables the applica-
tion of a magnetic induction of ±25 mT, temper-
ature variations in the range of –40 °C to 125 °C, 
and forces up to 15 N resulting in compressive 
isotropic mechanical in-plane stress down to 
about –100 MPa. The calibration data of the 
samples  are shown in Fig. 4. The inverse rela-
tive Hall sensitivity SH1 is taken as the regres-
sand, whereas the T sensor signals VT and 
sensor signals V serve as regressors. The 
outcome is fcomp(T, ), which turns the cross-sen-
sitive SH into the T and  compensated, constant 
SH,0 = SH fcomp. As an example, starting with a 4th-
order polynomial regression with 15 parameters, 
depending on the MSS sample LASSO produces 
5 different polynomial models with only 6 remain-
ing parameters (see Figs. 1(b) and 5). For each 
of these models, an OLSR calibration is per-
formed on the calibration data of all MSS and the 
best model is identified (see Fig. 1(c), blue poly-
nomial); it results in a compensated sensitivity 

Figure 3: Schematic and photograph of automated 
measurement setup for calibrating Hall-stress-temper-
ature sensor systems. Induction B, temperature T, 
and stress  are applied via Helmholtz coil, air stream 
into thermal chamber, and mechanical loading mech-
anism, respectively. 

with an uncertainty of ±0.27% (see Fig. 6). This 
is twice as good as the accuracy achieved with a 
2nd-order polynomial with 6 parameters as well, 
but resulting in an uncertainty of ±0.60%. Like-
wise (see Figs. 1(a, d)), the LASSO reduction to 
3 and 10 parameters, implying the same calibra-
tion effort as full 1st and 3rd-order models, lead to 
significant accuracy gains from 1.16% to 0.81% 
and from 0.22% to 0.18%, respectively. 

Figure 4: Measured calibration data: T and  depend-
ent, uncompensated inverse Hall sensitivity of 12 
MSS vs. respective output signals VT (left) and V 
(right) of T and  sensors. 

Figure 5: LASSO selection of reduced polynomials 
(with reduced nos. of model parameters) depending 
on the wanted accuracy (left). Several polynomials are 
identified from the individual MSS (right); the best one 
is chosen by applying OLSR to all MSS. 

Figure 6: Hall sensitivities of 12 MSS compensated 
with the best 4th-order polynomial fcomp with only 6 pa-
rameters. 
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