
 Robust Optimization of Self-x Sensory Electronics in 
Presences of Environmental Variations for Industry 4.0 

Qummar Zaman1, Senan Alraho1, Andreas König1 
1Lehrstuhl Integrierte Sensorsysteme (ISE), TU Kaiserslautern Deutschland, 

qummar@eit.uni-kl.de 

Summary: 
This paper introduces a new methodology to robustly optimize the re-configurable self-x ICs for indus-
try 4.0 in the presence of environmental uncertainty (EU).  For handling the EU, variance measure 
methodology has been selected due to its simplicity. The traditional particle swarm optimizer has been 
amended by adaptively adjusting its acceleration coefficients and expanding its selection procedure. 
The performance of the proposed modifications has been tested on two bench-marking functions. The 
extrinsic evaluation of the proposed algorithm has also been done on an instrumentation amplifier.  
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Background, Motivation and Objective 
The reliability, performance and accuracy of 
sensory electronics (SEs) are significantly im-
proving with the introduction of self-x (self-
calibration, self-healing, etc.) properties for 
industry 4.0. To introduce self-x properties in 
reconfigurable SEs, evolutionary and meta-
heuristic algorithms have shown superiority and 
powerful capabilities in addressing the multi-
objective optimization problems. A considerable 
amount of literature is available for the introduc-
tion of self-x properties in integrated electronics 
(ICs) [1]. However, the optimization of ICs in the 
presence of uncertainties is very rare [2]. In 
general, there are three different types of uncer-
tainties in ICs, i.e., drift due to fabrication pro-
cess (input uncertainty), uncertainty due to im-
perfect observer: (output uncertainty) and envi-
ronmental uncertainty (EU). While in [2] authors 
have recently proposed the noise immune me-
ta-heuristic algorithms for handling the input 
and output uncertainty of sensory electronics 
for industry 4.0, the primary objective of this 
paper is the robust optimization of reconfigura-
ble ICs in the presence of EU.  

Traditional particle swarm optimizer (PSO) is 
being elected as an optimizer for this research. 
Wide swing reconfigurable indirect current 
feedback instrumentational amplifier (CFIA) [3] 
which is an integral part of SEs is being chosen 
as a test vehicle for extrinsic evolution of the 
suggested optimizer. Transistors widths of CFIA 
are serving as a tuning knobs and system out-
put is being analyzed by the robust optimizer for 
its online trimming as shown in Fig. 1. For tack-

ling EU, variance measure has been adopted 
due to its simplicity [4]. The details of the output 
and input uncertainties can be found in [5]. 

 
Fig. 1. Types of uncertainties in ICs. 

Description of the Proposed Methodology 
As already mentioned, PSO has been selected 
as an optimizer for this research. Due to objec-
tive space complexity of fully differential CFIA 
[6], a sigmoid-function-based weighting strategy 
[7] is being used to adaptively control the cogni-
tive and social scaling factors, which indirectly 
optimize the exploitation and exploration while 
enhancing the convergence rate simultaneous-
ly. The basic structure of the proposed adaptive 
weight robust particle swarm optimizer 
(AWRPSO) is analogous to confidence-based 
robust optimization presented in [4], however, 
AWRPSO adaptively adjusts the acceleration 
coefficients along with taking EU into account. 

AWRPSO begins with random initialization fol-
lowed by the evolution of cost function. Then 
the variance measure will be evaluated to con-
firm the robustness of the solution. The parti-
cle’s personal or global best is being amended 
in case of better fitness value. The cogni-
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tive 1c and social 2c scaling factors are being 
updated according to the following equations 
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where 0.5a = , 1.5b = , 0.000035c = search 
range (distance between upper & lower bound 
of particle), 0d = and ( ) ( )ip or gD P k x k= − which 

represent the distances of the particle i to its 

bestp or bestg  at thk iteration. After that, the parti-
cle’s velocity and position are being updated, 
this procedure continues until maximum itera-
tions. The details of the remaining AWRPSO 
parameters can be found in [2]. 

Results 
For performance visualization of AWRPSO, 
further two different bench-marking functions 
(Schwefel & Griewank) from [2] are being opted 
[7]. To compare the exploitation and exploration 
capabilities of AWRPSO, three modifications of 
PSO are selected from the literature [8], i.e., 
linearly decreased inertia weight (PSO-LDIW), 
PSO with constriction factor (PSO-CK) and 
PSO with time-varying acceleration coefficients 
(PSO-TVAC). This experiment is performed 
using 30 particles and 750 iterations, while the 
convergence curve is computed by taking the 
mean of 100 runs which is depicted in Fig. 2. It 
is apparent that the convergence performance 
of the proposed AWRPSO is better than other. 

  
Fig. 2. Mean convergence curve comparison of 
AWRPSO and other state-of-art PSO.  

AWRPSO is also employed on CFIA for its ex-
trinsic evaluation. CFIA circuit is implemented 
by using AMS CMOS 0.35 µm technology. 
There are twenty-one tuning knobs (degree of 
freedom) and six objectives for this design test: 
bandwidth ≥ 40 MHz, gain ≥ 90 dB, phase mar-
gin ≥ 60°, power dissipation ≤ 2 mW, slew rate 
(SR) ≥ 50 V/µs and input common mode range 
(ICMR) [-1 V, 1 V]. Moreover, all transistors’ 
length is kept constant to 1 μm and  AWRPSO 

only alters the widths with step size of 1 μm. 
The detailed schematic diagram of CFIA can be 
found in [3]. For multi-objective optimization, an 
agglomerative approach is applied [2]. EU is 
modelled by varying the temperature from -40 
°C to +85 °C and the performance deviation of 
CFIA is illustrated in Fig. 3. It can be seen that 
without considering EU, the performance of 
CFIA deviates significantly, while for the robust 
solution the performance deviation is only 1/8 in 
case of gain. Hence the proposed extrinsic 
optimization promises more efficient intrinsic 
optimization or dynamic reconfiguration. For the 
intrinsic evolution of AWRPSO, we are actively 
working on designing of the reconfigurable SE 
with self-x properties for industry 4.0.  

 
Fig. 3. Comparison of robust and non-robust solution. 
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