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Summary

For finite element simulations of mechanic devices the material parameters of each constituent material
must be known. Depending on the applied loads to the component, high stresses changing the materials’
mechanical behaviour might have to be considered. Therefore measurements are performed under a constant
uniaxial tensile stress and the material parameters are identified.
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Introduction
Acoustic material parameters are often identified in
an inverse measurement procedure, where measure-
ment and simulation results are compared by a cost
function while varying the input parameters of the for-
ward model. The forward model can be computed
both analytically or numerically assuming Hook’s law
for small displacements. For greater displacements
nonlinearity should usually be considered in the for-
ward model. In this article the material’s behaviour
under stress is described by the changes in the elasti-
city matrix, while the forward model itself does not
consider the tensile stress. Through these changes
the Murnaghan constants [1] are computed.

Measurement setup
During the whole measurement the tensile stress
σT applied at the specimen (Fig. 1) is kept constant
by a programmable logic controller. Then short, high
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Fig. 1. Measurement system, adapted from [2].

power, laser pulses are focused on the specimens
surface to excite acoustic plate waves thermoacous-
tically, which are received by an ultrasonic transducer.
Varying the propagation distance by shifting the op-

tical unit and recording the respective received sig-
nals lead to a time and frequency dependent mat-
rix. Application of a two-dimensional Fourier trans-
form results in a matrix depending on frequency and
wavenumber, where the propagating modes become
visible as ridges.

Material parameter identification
The material identification described in [2] uses a for-
ward model assuming acoustic linearity and plane-
strain to compute the plate’s eigenfrequencies from
given wavenumbers. An optimisation algorithm finds
the model’s elasticity matrix for which the computed
dispersion diagram fits best to the frequency and
wavenumber dependent matrix obtained from meas-
urement. Because of the uniaxial load σT in x2-
direction (Fig. 1) during the measurements, the ma-
terial properties change depending on the spatial dir-
ection, so that an orthotropic material is assumed in
the identification.

Evaluation under constant load
Using the Effective Elastic Constants (EECs) [3] to
describe the changes of the elasticity matrix C the
stress-strain relation results in

σσσ = (C0 +δC)εεε, (1)

where the entire elasticity matrix consists of the elasti-
city matrix C0 measured with a tensile load of σT = 0
and the change δC under stress σT �= 0 w.r.t. C0. Four
elasticity coefficients are identified for each tensile
load σT:

C =




c11 c12 0
c12 c22 0
0 0 c66


 (2)
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Fig. 2. Absolute change of elasticity coefficients δci, j
w.r.t. the elasticity coefficients c0,i, j identified for a
tensile load of σT = 0 for specimen 1.

Without any outer stress σT the isotropic elasticity
matrix is fully described by the Lamé constants λ =
c12 and µ = c66.

Acoustoelastic effect
An initial isotropic material with Lamé parameters λ ,
µ and density ρ0 under an uniaxial tensile load is de-
scribed by

ρ0v2
11 = λ +2µ − σT

3λ +2µ

[
2l − 2λ

µ
(m+λ +2µ)

]
(3)

ρ0v2
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σT
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ρ0v2
66 = µ − σT
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(5)

with the sound velocities

vii =

√
cii

ρ
, (6)

where v11 and v22 are the longitudinal sound velocities
and v66 is the transverse sound velocity [4] of a wave
propagating in x2, polarised in x1-direction. Knowing
the material’s Lamé constants and sound velocities
the equations are solved to determine the Murnaghan
constants m, n and l.

Results
Polycarbonate plates of 3mm thickness are evaluated
exemplarily. Measurements during an applied load up
to σT = 39MPa (8kN) are performed and the ortho-
tropic elasticity matrix is identified. As Fig. 2 shows,
the elasticity parameter c22 and so the longitudinal
wave velocity in the direction of load σT are influ-
enced most significantly, while the elasticity coeffi-
cient in x1-direction (perpendicular to the load) c11
changes least. This trend corresponds to the effect-
ive elastic moduli determined under constant con-
trolled stress by Brillouin spectroscopy [5]. In general
the Murnaghan constants can be determined for each
tensile load σT. Therefore the mean of the computed
Murnaghan constants is shown in Tab. 1. Despite the

Tab. 1. Determined Murnaghan constants m, n and l
of polycarbonate.

Specimen m / GPa n / GPa l / GPa
1 -7.8 -21.1 -66.5
2 -7.7 -30.2 -54.3
3 -7.6 -30.9 -52.3

Literature [6] -12.2 -32 -50

neglection of nonlinearity, the determined Murnaghan
constants are quite similar to the ones from [6], where
they were computed from the elasticity tensor coeffi-
cients shown in [5], measured through Brillouin spec-
troscopy. Some differences are expected due to ma-
terial production tolerances and thus different density
and Youngs’ modulus for the computation.

Conclusion
Murnaghan constants are determined by a change of
the elasticity coefficients assuming a linear relation.
Despite the approximations the values are quite sim-
ilar to results found in literature. However this influ-
ence should still be considered in the forward model
in future works. Also acoustic absorption phenomena,
temperature and uncertainty influence should be re-
garded.
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