
 Safety Sensor Applications with Graphical Programming
Nick Berezowski1, Markus Haid1, Jeet Biswas1, Ishak Boyaci1

1 University of Applied Science Darmstadt, Schöfferstraße 3, Darmstadt, Germany
nick.berezowski@h-da.de

Summary:
This research recommend the use of a a graphical full variability programming language for safety-
related sensor system developments, in order to create framework conditions that result in a general
approach for graphical sensor applications. A graphical programming language represents a language
whose basic elements consist of blocks, symbols and lines between them, not like text-based or su-
perimposed visual languages with ASCII-formatted semantics.

Keywords: Functional Safety, Graphical Programming Language, Graphical Full Variability Program-
ming Language, Recent Developments, LabVIEW

Introduction
Graphical programming languages offer a visu-
al development design that increasingly focuses
on natural human thought structures, which
frees up thinking resources for content-related
problem-solving approaches [1]. They can
serve as essential means of communication
when using fourth generation programming
languages [1]. This suggests that graphical
programming languages, with the ability to vis-
ually represent abstract control flow and data
flow structures, can be considered fourth gen-
eration programming languages, and thus serve
further development as well as functional secu-
rity.

From a technical point of view, graphical pro-
gramming languages are just another depiction
of the implementation that is very similar to the
models of text-based languages, but represent
the implementation of graphical languages.
Thus, they can substitute for well-known semi-
formal methods, such as UML, provided that
appropriate regulations are adhered to.

Since there is no research on this topic so far,
the question of feasibility arises.

Theoretical Fundamentals
There are numerous standards for functional
safety. Some are described in Fig. 1. These are
updated and rewritten irregularly in order to
provide descriptions of the current state of
technology. Among other things, emphasis is
placed on tendentious technology innovations
in order to consider them for future projects. [2]

Fig. 1. Overview of functional safety standards.

For an initial process development in sensor
systems only the basic standard IEC 61508 is
needed.

To create a qualifiable development in a graph-
ical development environment requires specific
methods and approaches that can not be dic-
tated solely by the development environment
and require a clear definition in terms of func-
tional safety.

General structures
During the specification of requirements for
safety-related systems, all relevant infor-
mations, such as requirements for the system,
subsystems and components, must be record-
ed. Semiformal and formal methods can pro-
vide a detailed specification of the require-
ments. Due to their graphical structures, semi-
formal methods are to be understood as similar
to graphic code and thus preferable to formal
methods. If possible, computer-aided specifica-
tion tools should be used, which reduce the
error potential during execution and lay the

Topic (choose from website):

 SMSI 2020 Conference – Sensor and Measurement Science International 321

DOI 10.5162/SMSI2020/P3.3

basis for traceability. This is divided into forward
and backward traceability. Forward traceability
should be possible, especially at higher safety
integrity levels between all phases of the soft-
ware safety lifecycle [3]. A computerized tool
could support these relationships.

Programming Languages Structure
To comply with the sensor requirements of the
basic standard, a language subset must be
defined which excludes the use of unsafe pro-
gramming code constructs and checks their
compliance with static analysis tools. [3]

A graphical programming language to be used
must have a strict typing [3]. This means that
type conversions must be obvious. Compliance
checking can be done through in-program pro-
gramming tests or, if necessary, additional stat-
ic testing.

Since no already certified tools exist, tried-and-
tested tools and translators should be used.
These must be regarded as established and not
error-prone in the relevant area of a safety-
related system to be used. A test and verifica-
tion environment that compares executable
code with source code can provide additional
confidence for individual sensor systems, but
not for the complete environment. [3]

Programming Structures
There is a possibility that a graphical program-
ming language may self-comply with some
semiformal models, such as state transition
diagrams and flowcharts, allowing for require-
ment determination and modeling close to pro-
grammatic implementation, potentially shorten-
ing development time and the necessary
framework.

The rules of structured programming must be
applied. Defensive programming can only be
used in necessary places, since it also worsens
the understanding of the complete program. [3]

The modular approach offers several sub-
methods, all of which must be adhered to in a
graphical programming language [3]. Some
graphical languages inherently have a modular
flow-controlled structure that supports these
methods.

In general, a monitoring device should work
with separation between monitoring and moni-
tored computer in order to demonstrate a gen-
eral independence for the introduction of a pro-
gramming language. [3]

Completed Work
First, various standards and guidelines for func-
tional safety and authoritative literatures for
graphical programming languages were ana-

lyzed to make reference to the prior art. Based
on the basic IEC 61508 standard, a rough con-
cept with various possible solutions for software
development in graphical programming lan-
guages was developed. The different methods
and procedures let us derive an overall archi-
tecture using semiformal methods, which cre-
ates a direct relationship between design, de-
velopment and programmatic implementation of
a sensor application. It was possible to create a
theoretical concept for an architecture frame-
work, which should consist of project manage-
ment, configuration management, test man-
agement, design and development tools in or-
der to create a comprehensible link with the
programming language and physical system.

Further Work
Currently, the previous knowledge for graphical
full variability programming language apply.
Here, an implementation was created that pro-
vides the basis for testing and validation
through the use of semiformal methods and
model-based analyzes. The basis for this is the
establishment of safety functions via finite state
machines. Based on the limitations of the lan-
guage scope by means of language subsets,
expert interviews should be conducted, if possi-
ble, with responsible persons involved in cur-
rent established qualified procedures. This
gives the basic work for recommendations for
developing a policy in a special graphical pro-
gramming language. Subdivisions into software,
hardware and management have already been
taken. Nevertheless, software structures can
provide the basis for safe hardware and sensor-
ic structures.

After developing the basic safety-related meth-
ods and procedures, as well as developing
recommendations for a guideline, the findings
must be tested and applied to a special graph-
ical programming language and sensor sys-
tems. The programming language G in the de-
velopment environment LabVIEW provides the
best framework for this.

References
[1] Ludwig Coulmann (Hrsg.) (1993): Programmvis-

ualisierung bei Sprachen der 4. Generation - Vis-
ualisierung von NATURAL-Programmen. Spring-
erLink.

[2] DIN EN 61508-1, Februar 2011: DIN EN 61508-1
(VDE 0803-1):2011-02.

[3] DIN EN 61508-3, Februar 2011: DIN EN 61508-3
(VDE 0803-3):2011-02.

 SMSI 2020 Conference – Sensor and Measurement Science International 322

DOI 10.5162/SMSI2020/P3.3

