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Summary: 
Atan2 function is widely used in most angular sensor nowadays. In order to increase the sensor accu-
racy, system errors must be compensated before the atan2 calculation. The offset issue and ampli-
tude mismatch are two of the most significant system errors. Until today, different approximation 
methods are being used to estimate the maximum effects of them. However, these methods are not 
fully satisfying, especially in terms of high offset issue or angular mismatch, as mentioned. In this pa-
per, a new method with Lissajous-figure is introduced to calculate this impact of those errors analyti-
cally and to provide an accurate solution, which can compensate the errors completely. 
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Introduction 
Rotary position sensors such as resolvers and 
magnetic sensors are widely used for rotary 
positioning applications. The most popular 
method to calculate the angular position is us-
ing the atan2 function. In order to improve the 
sensor accuracy, systematic errors such as 
offset issue and amplitude mismatch should be 
compensated. The conventional solutions for 
them are given in [1]. However, they are not 
accurate because of the following two facts: a) 
imperfect sampling (e.g. noise, quantization); b) 
in some cases corrections are permitted only 
after atan2 calculation. Furthermore, a more 
accurate solution for the remaining error is re-
quired for sensor designing. Therefore, different 
methods have been studied: approximation 
methods for offset issue are introduced in [2] [3] 
[4] [5] [6]; approximation methods for amplitude 
mismatch in one-dimensional problem are ex-
plained in [5] [6] [7] [8]; a solution for the two-
dimensional problem was given in [9]. Those 
methods base on approximation, so that, they 
are not accurate enough for precise applica-
tions. This paper presents solutions without 
approximation. Therefore, offset issue and am-
plitude mismatch can be compensated totally.  

Estimate the Impact of Offset Issue  
The effect of offset issue can be described us-
ing a Lissajous figure (see Fig.1). The circle 
with solid line represents the Lissajous figure of 
the ideal sinus and cosine signal, while the 

circle with dashed line is regarded as the Lissa-
jous figure for signals with offset issues. 

 
Fig. 1: Lissajous-figure with and without offset issue. 

Moreover, the distance a and b represent the 
offset of sine and cosine signal. Furthermore, 
the angle α* is equal to the target angle, while 
the angle α is known as the measured angle. In 
order to build the relationship between the an-
gles α and α*, both Lissajous-figures should be 
rotated around their own origins until the axis x 
and x* are overlapped (see fig. 2a). The rotated 
angle can be proven as:  

    (1) 

As both of the x axes overlap, the angle error ε 
is then the difference between α and angle α*:  

    (2) 

Furthermore, the angle ε can be calculated with 
the help of an auxiliary line OH, which is per-
pendicular to line PO* (see fig 2b) and get: 

 (3) 

E.1 Underlying mathematical and information theory: 
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Fig. 2 Rotated Lissajous-figure for offset issue 
The both Lissajous-figure must be standardized 
before the further mathematical deduction. 
Therefore, the radius O*P is equal to 1, so that 
the eq. (3) can be simplified as eq. (4), with d 
being defined as eq. (5). 

  (4) 
   (5) 

Consequently, the maximum error can be cal-
culated with the help of the eq. (6),  

    (6) 
and get the eq. (7). That means also, if the error 
reaches its maximum, the edge OP should per-
pendicular to OO*. 

   (7) 
Estimate the Impact of Amplitude Mismatch 
The amplitude mismatch can also be illustrated 
with the Lissajous-figure (see fig. 3a). The Lis-
sajous figure of a system with amplitude mis-
match acts as an ellipse instead of a circle (see 
fig. 3a dashed line).  

 
Fig. 3.Lissajous-figure for amplitude mismatch  
The amplitude mismatch is formulated as: 

    (8) 
The angle α shows the measured angle, while 
α* corresponds to the angle in an ideal system 
without amplitude mismatch. Moreover, the 
angle ε means the deviation between the 
measured angle and ideal angle. In additional 
an auxiliary line QH is required, which is per-
pendicular to OH (see fig. 3b). Observably, the 
triangle ΔQHP and the triangle ΔOSP are simi-
lar. Angle α can be measured and OQ repre-
sents the radius with value 1 (after standardiza-
tion). Furthermore, the quotient of QP and QS 
is equal to the amplitude mismatch: 

     (9) 

Therefore, the edges of triangle OH and QH 
can be determined with eq. (10) and eq. (11): 

 (10) 

  (11) 
Consequently, the angle error ε is defined as: 

   (12) 
The maximum angle error at position α can be 
calculated as the first derivation. After a simpli-
fication the maximum angle is defined as:  

  (13) 
Furthermore, that κ means the angle between 
the eigenvectors of the systems with/without 
amplitude mismatch (see fig. 4). 

 
Fig. 4 correlation angle κ 

Conclusion 
To increase the sensor accuracy mathematical 
deduction was used. So that the impact of the 
offset issue and amplitude mismatch can be 
estimated. The eq. (7) and (13) can be used to 
estimate the maximum error of the offset issue 
and amplitude mismatch respectively. With the 
eq. (4), the offset issue can be compensated 
completely for each position α. Similarly, the 
amplitude mismatch can be corrected with the 
eq. (12) completely.  
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