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Abstract 
Satellite-based localization systems are nowadays widely deployed in transportation, especially with the 
progress of global navigation satellite systems (GNSS). However, GNSS signals are easily degraded 
by the local environment. This compromises the accuracy of the position solution and makes it challeng-
ing to implement satellite-based localization systems in the road and railway domain. With the help of 
Bayes filters (e.g., Kalman and particle filter), the localization accuracy can be improved. However, these 
filters are constrained by assumptions, and they require accurate modeling of errors for optimal estima-
tion. Under these circumstances, another modeling method is researched in this paper. As machine 
learning has become more sophisticated over the years, neural networks are now suitable for learning 
the relation between the position errors and the abundant information from the GNSS receiver without 
prior knowledge. Therefore, the dilution of precision, the elevation angle and the carrier-to-noise ratio 
are appropriate indicators for signal degradation. In this paper, it is shown how neural networks are 
trained to estimate the position error of satellite-based localization systems. For modeling the temporal 
correlation in position error measurements, the long short-term memory (LSTM) network is applied. 
Finally, it can be demonstrated that the neural networks are able to learn the trend in position errors. 

Key words: satellite-based localization systems, machine learning, land vehicles, LSTM, error estima-
tion

1 Introduction 
With the ongoing advancement of global naviga-
tion satellite systems (GNSS), satellite-based lo-
calization has become more dependable for 
transportation applications over the last dec-
ades. However, due to terrestrial influences, the 
application of satellite-based localization en-
counters major challenges in the road and rail-
way domain. The satellite signals are easily de-
flected, diffracted and obscured by buildings, 
trees and tunnels on the ground. Commonly aris-
ing effects are for example the multipath effect 
and non-line-of-sight (NLOS) signals. That deg-
radation of satellite signals leads to a reduction 
in accuracy and other characteristics concerning 
the measurement quality of the localization sys-
tems. 

Many approaches are developed to mitigate the 
degradation of satellite signals. For example, the 
Bayes estimators such as the Kalman filter and 
the particle filter are nowadays widely imple-
mented in the GNSS receivers for that purpose. 
The Kalman filter is however restricted by the as-
sumptions of linearity and normal distribution. 

The particle filter is applicable for nonlinear sys-
tems and non-Gaussian distributions, but it 
comes at the expense of high computational 
complexity. Furthermore, the Bayes estimators 
require explicit modeling of the effects to be mit-
igated.  

Multipath and NLOS reception are to a certain 
extent deterministic effects because they mainly 
exist due to surrounding objects such as build-
ings. Therefore, an accurate geometric modeling 
of the degraded signals is feasible. An example 
would be the ray-tracing method [1]. By analyz-
ing the path of satellite signals, possible deflec-
tion, diffraction and obscuration can be found 
with a 3-D map of the surrounding area. This 
method is naturally very computationally expen-
sive and its accuracy is highly dependent on the 
accuracy of the map as well as on the model of 
signal transmission. 

Other methods focus on the possible indicators 
for the existence of multipath and NLOS in the 
GNSS receivers. Groves et al. propose a portfo-
lio to mitigate signal degradation under the con-
sideration of multiple possible indicators as well 
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as antenna techniques [2]. Considered indica-
tors are for instance the carrier-to-noise ratio 
(C/N0) and the elevation. 

Data fusion is also applied to integrate GNSS 
with dead reckoning methods such as inertial 
navigation systems (INS) and odometers. How-
ever, the two latter ones lack long-term accuracy 
due to error accumulation over time and hence 
cannot guarantee accuracy of the integrated 
system during GNSS outages.  

To improve the measurement quality of GNSS, 
different signal augmentation techniques can be 
applied, such as real-time kinematics (RTK), 
Precise Point Positioning (PPP) or a hybridized 
version of both to combine the benefits of both 
approaches (PPP-RTK). RTK improves the 
measurement quality by not only utilizing the 
time information of the satellite signal, but also 
by using the information gained by analyzing the 
characteristics of the carrier phase. This is 
achieved by using additional information pro-
vided by a near base station (30-50 km) or by a 
network of base stations and advanced algo-
rithms. Thus, RTK can provide an accuracy of up 
to 1 cm. In contrast to that, PPP only relies on 
GNSS satellite clock and orbit corrections pro-
vided by a global network via satellite or internet 
link in order to estimate phase characteristics 
and can achieve an accuracy in the decimeter 
level. It is a challenging limitation that the algo-
rithms need a different period of time for the po-
sition solution to converge (the so-called position 
fix), i.e., from a few seconds (RTK) up to 30 
minutes (PPP). The position fix can be easily lost 
in environments with significant amounts of sig-
nal degradation, drastically reducing the availa-
bility of such systems. [3]. 

However, to the knowledge of the authors, the 
existing methods can provide a solution to some 
– but not to all – issues at hand. Over the last 
decade, machine learning techniques have be-
come a promising solution especially for the 
cases when no exact models are required for the 
problems to be studied [4]. In this paper, the pos-
sibility of applying machine learning as an esti-
mator for the position error of satellite-based lo-
calization systems is explored and discussed.  

2 Relevant Work 
Similar to other domains, there is a growing in-
terest in applying machine learning to satellite-
based localization systems. In this chapter, rele-
vant research is shortly introduced.  

Satellite-based localization systems with GNSS 
and INS are nowadays commonly found. How-
ever, an INS suffers from error propagation over 
time and the position error from the INS can ac-
cumulate to a large level in a short period. Ma-

chine learning is applied to learn how GNSS cor-
rects the INS error during its normal operation. 
The trained algorithm can then be implemented 
to mitigate the INS error during GNSS outages 
and to assure accurate localization over a longer 
time span using a back propagation neural net-
work [5]. Wang et al. further suggest that a hybrid 
architecture with a radial basis function neural 
network and an extreme learning machine can 
improve the accuracy of prediction under dy-
namic conditions [6]. 

Machine learning is also adopted to improve the 
accuracy of map-matching algorithms for satel-
lite-based localization systems. Hashemi and 
Karimi apply an online feedforward neural net-
work to predict and reduce GNSS errors in order 
to improve the correct segmentation rate of the 
map-matching algorithm. The speed and hori-
zontal dilution of precision (HDOP) are adopted 
as the inputs for the machine learning algorithm 
under the assumption that the position error is 
temporally autocorrelated. However, the results 
prove their assumption wrong. Instead, the neu-
ral network provides the best performance when 
the input is constant. [7]. 

Machine learning is also applied to aid the detec-
tion of multipath and NLOS. Hsu develops a sup-
port vector machine (SVM) to distinguish line-of-
sight (LOS), multipath and NLOS signals by an-
alyzing features such as the received signal 
strength, the change rate of received signal 
strength and the pseudorange residue [8]. He re-
ports a classification accuracy of about 75% for 
certain features.  

Kuratomi conducts similar research compared to 
this paper. He develops a position error estima-
tor for GNSS using machine-learning-based 
methods such as decision trees and support vec-
tor machines. Common receiver measurements 
such as C/N0, elevation as well as the infor-
mation coming from the navigation filter such as 
the innovation in the Kalman filter are applied as 
the inputs for the estimator [9]. Furthermore, a 
camera is used to detect multipath and the re-
sults are fed to the machine learning algorithms 
as additional inputs. Though the final results are 
promising, he proposes to use deep neural net-
works to achieve higher estimation accuracy.  

3 Fundamentals 
In this chapter, the sources and the propagation 
of GNSS errors are firstly discussed. After that, 
the used machine learning algorithm as well as 
the applied dataset are shortly introduced. 

3.1 Error Sources of GNSS 

The accuracy of GNSS is under the influence of 
many sources. The major sources are the clock 
error, the ionospheric and tropospheric errors as 
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well as multipath and NLOS. Fig. 1 illustrates 
that the signal paths from the satellites can be 
extended in the atmosphere as well as due to re-
flection on objects surrounding the receiver. 
These error sources directly cause a deviation in 
the pseudorange measurement corresponding 
to every satellite. The receiver position is then 
estimated by least square estimation or by the 
Kalman filter based on the pseudorange meas-
urements. The relation between the pseudor-
ange measurement of the ith satellite and the re-
ceiver position [xr, yr, zr] to be estimated can be 
expressed as 

ρi = (xi - xr)
2+ (yi - yr)

2+ (zi - zr)
2+δρi                     (1) 

where [xi, yi, zi] is the satellite coordinate and δρi 
is the sum of pseudorange errors. It can be eas-
ily noticed that the pseudorange measurement is 
the sum of the geometric distance between re-
ceiver and satellite and the range errors. Moreo-
ver, the relation between pseudorange and posi-
tion is nonlinear. The propagation of the pseu-
dorange error to various localization solutions 
such as position, velocity and time (PVT) infor-
mation is dependent on the signal geometry, 
which can be generally understood as the distri-
bution of all used satellites in 3-D space. The sig-
nal geometry can be quantified by the dilution of 
precision (DOP) [10]. The aforementioned 
HDOP is a variant of the DOP and is dedicated 
to horizontal planes, i.e., to describe the influ-
ence of the satellite geometry on the accuracy of 
the horizontal position solution. A high HDOP 
value indicates that the pseudorange errors 
propagate to the horizontal plane to a great ex-
tent. 

 

Several measurements of the receiver can be 
linked to the error sources. The elevation is the 
angle between the signal (from satellite to re-

ceiver) and the horizontal plane. Generally, sig-
nals from satellites of low elevation are more in-
fluenced by atmospheric effects since their paths 
in the atmosphere are longer than the paths of 
signals from high-elevation satellites. Moreover, 
low-elevation signals are more likely to be de-
graded by multipath and NLOS since the signals 
are more probable to be blocked and reflected 
[10]. C/N0, the carrier-to-noise ratio or signal-to-
noise ratio, is considered to be relevant to the 
quality of the received signals. In urban areas, 
reflections happen frequently and C/N0 is ob-
served to be lower. Hence, C/N0 is regarded as 
indicator for multipath and NLOS [11]. 

Many models have been developed to analyze 
the impact of error sources on pseudoranges. 
For ionospheric and tropospheric effects, there 
are sophisticated models that are especially ap-
plied to receivers of high quality. These models 
are complex and require current data for a given 
region from base stations.  

For multipath and NLOS, the aforementioned 
ray-tracing method has already been imple-
mented for simulation purposes in commercial 
software. However, the required 3-D map is not 
available everywhere due to high data volumes 
as well as due to the high complexity in generat-
ing the map. If the map is not up-to-date, it would 
also lead to an accuracy degradation of the ray-
tracing method. Moreover, running ray-tracing in 
real time on vehicles would lead to high ex-
penses on the computation hardware. Further-
more, multipath and NLOS do not simply lead to 
the geometric elongation of signal paths, but the 
resulting errors are also dependent on the signal 
processing inside the receiver [12].  

A model to correctly describe the error propaga-
tion from diverse error sources via pseudorange 
measurement to the position errors is extremely 
difficult to establish. Even if it can be realized, it 
would be excessively complex with the classic 
modeling techniques based on linear or nonlin-
ear equations and various assumptions on the 
underlying statistical distributions. 

3.2 Machine Learning 

The advantage of machine learning is that it 
does not require explicit modeling and that it can 
be trained to discover the model by learning the 
linkage between data. Due to the difficulties that 
classic approaches have in finding a model for 
the position errors of satellite-based localization 
systems, machine learning could be suitable to 
find this model based on the collected data in the 
field.  

Generally, there are three main kinds of learning 
tasks with machine learning: supervised learn-
ing, unsupervised learning and reinforcement 

Fig. 1. Illustration of major error sources for 
GNSS 
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learning. Supervised learning is targeted to learn 
the mapping function between the inputs and the 
outputs based on the input-output pairs in the 
training set and it is commonly applied to solve, 
among others, regression problems. Apart from 
that, unsupervised learning is often adopted to 
study the distribution of data and it is widely used 
for clustering and generating data. Reinforce-
ment learning, however, has the feature that it 
can update the model during deployment, 
whereas for supervised and unsupervised learn-
ing, the model is determined during the training 
phase and remains unchanged during deploy-
ment. Since the target of this paper is to find the 
relation between several indicators and the posi-
tion errors based on the collected data – without 
further deployment of the model in the field –, su-
pervised learning is suitable.  

Many models can be applied to perform a ma-
chine learning task, such as the feedforward 
neural network by Karimi [7]. This type of neural 
network is normally applied to link the relation 
between inputs and outputs of the same time 
epoch, i.e., it only considers the static behavior. 
However, the position errors of satellite-based 
localization are timely correlated, i.e., the posi-
tion error at time epoch ti can also be under the 
influence of error sources of previous time 
epochs [13]. The recurrent neural network 
(RNN) is specially designed for processing se-
quential data [14] and is therefore suitable to 
model time series. As shown in Fig. 2, an RNN 
layer with multiple cells can process a sequence. 
The cells not only learn the inputs, but also pass 
information further to the next cell.  

 
The term RNN covers a class of recurrent neural 
networks. The most widely applied network in 
that class is the LSTM [15]. It is suitable for cap-
turing both the long-term and the short-term pat-
tern in the sequence. An LSTM network consists 
of input it , forget ft  and output gates ot . LSTM 
networks use the cell state vector ct to receive 
information from previous steps in the processed 
sequence and to pass the information further to 
the following steps in that sequence. Mathemat-
ically, an LSTM cell can be described using fol-
lowing equations 

ft = σ(Wf xt + Uf ht-1 + bf)                                         (2) 

it = σ(Wi xt + Ui ht-1 + bi)                                          (3) 

ot = σ(Wo xt + Uo ht-1 + bo)                                     (4) 

ct = ft ⨀ ct-1 + tanh(Wc xt + Uc ht-1 + bc)               (5) 

ht = ot ⨀ σ(ct)                                                        (6) 

where σ represents the sigmoid activation func-
tion and ⨀ denotes the element-wise multiplica-
tion. The major improvement of LSTM against 
original RNN is that the vanishing and the ex-
ploding of gradients is avoided using the forget 
gate [15]. LSTM networks can be applied for ma-
chine translation [16], also for the prediction of 
time series [17]. 

3.3 Dataset 

The data applied in this paper were collected in 
Braunschweig, Germany, on several days in Au-
gust 2014. For the data collection, an automo-
tive-grade u-blox receiver and an OxTS RT 3002 
integrated system were used as the common re-
ceiver on the vehicle and as reference respec-
tively. The test vehicle followed the designed tra-
jectory for 20 times in total. Data collected during 
5 of those 20 runs are used as dataset since they 
were all collected under the simplest receiver 
settings without additional correction services. 
Those settings truly represent the quality of an 
automotive-grade GNSS receiver. The trajectory 
consists of environments including urban areas, 
multiple bridges, forest, suburban area and high-
way (Fig. 3). Both the u-blox receiver and the ref-
erence system recorded data at 5 Hz frequency.  

With the aim to identify suitable inputs for the 
machine-learning-based model, the available 
quantities provided by the receivers are ana-
lyzed hereinafter. Apart from the PVT infor-
mation, the u-blox receiver can provide different 
metrics of dilution of precision, C/N0, elevation 
and azimuth of the used satellites. Utilizing all 
available C/N0 and elevation angles of the used 
satellites as inputs for the neural network would 
render the dataset too complex. Hence, those 
measurements are reduced to their mean val-
ues. For C/N0, another parameter is considered, 
i.e., the percentage of satellites with low C/N0. 
This is done under the assumption that if most 
used satellite signals are degraded by errors and 
indicated by lower C/N0, the estimation algo-
rithm in the receiver can neither identify nor ex-
clude the erroneous measurements. Thus, large 
deviations in the position measurements can be 
expected. Here, the threshold for low C/N0 is de-
fined at 20 dB. Moreover, the model requires ref-
erence values of position errors to evaluate the 

Fig. 2. Illustration of a typical many-to-one mode 
of RNN 
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estimation. The reference values of the position 
errors are calculated as the difference between 
the positions measured by the u-blox receiver 
and the reference receiver. 

It can also be observed in Fig. 4 that the data for 
diverse environments differ from each other. Us-
ing a single model to learn all the features 
throughout the run would be particularly chal-
lenging. Therefore, the dataset is segmented on 
the basis of the aforementioned environments. 

3.4 Model 

Based on the understanding of position errors in 
the fields of satellite-based localization and ma-

chine learning, a neural network with LSTM lay-
ers is applied in this paper to model the position 
errors. The model consists not only of LSTM lay-
ers, but also of a fully connected linear layer. The 
LSTM layers are used to discover the underlying 
temporal correlation and the fully connected 
layer links that correlation to the output. Moreo-
ver, a dropout layer is inserted between the 
LSTM and the fully connected layers to improve 
regularization in order to avoid overfitting. The 
architecture of the model is depicted in Fig. 5. 

Specifically, the following measurements are 
adopted as the inputs for the neural network: 

- number of used satellites 
- HDOP 

Fig. 4. Position error in north direction collected in one run 

Fig. 3. Trajectory for data collection [18] 
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- mean value of C/N0 of used satellites 
- mean value of elevation angle of used 

satellites 
- percentage of used satellites with low 

C/N0 (< 20 dB) 
- speed over ground.  

 
Two models with the same architecture as de-
picted in Fig. 5 are developed for two kinds of 
outputs: 

- Model 1: the position errors in north and 
east direction [δpN, δpE] in local naviga-
tion coordinates are the outputs: 

- Model 2: the horizontal position error 
δpH, calculated by following equation, is 
the output: 

           δpH  =  √(δpN)2 + (δpE)2.                             (7) 

Mathematically, the models can be formulated 
as: 

yi = f(xi-τ, xi-τ+1, …, xi-1)                                           (8) 

where 

- yi is the position error(s) 
- xi-τ is the input(s) at ti-τ 
- τ is the time lag in the processed se-

quence. 

The target is to minimize the difference between 
the output estimated by the neural network ŷi 
and the reference values of position errors yi . 
The mean squared error (MSE) is used as the 
loss function. Mathematically, the MSE loss is 
expressed as 

L = 1
N

 ∑ (ŷ  - y)2  n
 N                                                   (9) 

where N is the batch size. 

4 Experiments and Results Analysis 
For the training of the models, the dataset for the 
environment “urban area” is used. The sizes of 
training, validation, and test sets are respectively 
36000, 4500, 4500. Here the size refers to the 
number of timestamps with multiple quantities 
measured per timestamp. The data are first nor-
malized to improve the convergence speed and 
to avoid instability in the training. Furthermore, 
the dataset is sliced in a window form for the 
training of the LSTM network. This process is de-
picted in Fig. 6. As it can be seen, the window 
takes every time a subsequence in length of τ, 
which corresponds to the input array mentioned 
in eq. 8. After that, the window increments one 
step further down in the input sequence. 

 
Fig. 6. Window method for dataset preparation with 

time lag equal to 10 measurement points 

The models are implemented with the help of the 
machine learning library PyTorch [19] in Python. 
The Adam [20] and the rmsprop [21] optimizer 
have been tested. For the applied dataset, the 
rmsprop optimizer provides better results. 

For model 1, it can be observed as in Fig. 7 that 
the estimated value of the model can generally 
follow the trend of the reference value. However, 
the model encounters difficulties in capturing the 
short-term features such as the peaks with ex-
treme values. Moreover, the estimated values 
show a high frequency fluctuation. After further 
parameter tuning, it is noticed that a stacked 
LSTM layer or an LSTM layer with more hidden 
units cannot improve the drawbacks of the model. 
For the test set, the MSE loss for model 1 is 
14.00 m2. 

Model 2, however, presents different results. It 
can be noticed in Fig. 8 that model 2 can capture 
the short-term peak at the beginning of the da-
taset. It can also trace the trend of the reference 
value. The MSE loss for the test set is 2.85 m2. 
From the 2-D density plot in Fig. 9, it can also be 
noticed that most estimations lie near to their 
corresponding reference values. This result 
shows that model 2 could potentially be used to 

Fig. 5. Architecture of the applied neural network 
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calculate the horizontal protection level which is 
used for the autonomous integrity monitoring of 
GNSS-based localization systems. 

Possible reasons for the existing problems are 
summarized as follows: 

- The used inputs are only indirect indica-
tors for the error sources. More inputs 
are possibly required to capture the tran-
sient arising peaks; 

- Position errors contain both the deter-
ministic part, which can be traced back 
to the inputs, and the stochastic part, 
which cannot be linked with the inputs. 
Thus, the model would not be able to 
learn the stochastic elements in the po-
sition errors; 

- Training and test demonstrate slightly 
different patterns. Despite the effort to 
improve regularization, the model is still 

Fig. 7. Comparison of estimated and reference position error for model 1 

Fig. 8. Comparison of estimated and reference position error for model 2 
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overfitted to the training set. This resides 
in the nature of machine learning that it 
is data-dependent. 

 
Nonetheless, the models show the ability to pre-
dict the trend, especially the long-term bias is 
well learned.  

5 Conclusion and Outlook 
A machine-learning-based position error estima-
tion for satellite-based localization systems is 
developed with the aim to explore an alternative 
to current common methods such as Bayesian 
estimators. The analysis shows that an explicit 
modeling from the error sources to the position 
domain is difficult to establish. Especially in the 
localization environment of land vehicles, local 
effects like NLOS complicate the modeling. In 
contrast, machine learning has the advantage 
that it can be trained to learn the effects of the 
measurement environment based on data. 

Neural networks with an LSTM layer are applied 
for position error estimation based on the as-
sumption that position errors are temporally cor-
related. Several common outputs of automotive-
grade GNSS receivers are used as the inputs for 
the neural network to estimate position errors. 
Through simulation, it is shown that the trained 
networks have the ability to learn the long-term 
trend in the position error datasets. However, 
they do not satisfactorily accomplish to fit the 
short-term noise.  

Possible improvements could be made by devel-
oping an alternative approach to model stochas-
tics, i.e., a decomposition of position errors into 
deterministic and stochastic parts. Apart from 
that, modifications to the neural networks, such 
as a more complex architecture, are worth con-
sidering for research in the future as well. 
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