
 The European Test and Telemetry Conference – ettc2020 198

DOI 10.5162/ettc2020/6.7

Job Process Architecture Based On PostgreSQL Database
Gonzalez-Martin Moises
Roses-Sanchez Diego

Garcia-Garcia Jorge (ALTRAN)
Flight Test – Airbus Defence and Space

moises.gonzalez@airbus.com
diego.roses@airbus.com

jorge.garciagarcia@altran.com

Abstract: The purpose of this paper is to show an integrated Job Process architecture that allows
executing heavy jobs that can be parallelized at process level without the need to use complete Big
Data Architecture. This solution can be seamlessly integrated into any Data Centre, be it in a Linux or
Windows environment. PostgreSQL is shown as the system to coordinate the workflow of execution of
these processes.

Key words: Job, Process, PostgreSQL1, Parallelization, Batch processing

Introduction

The flight test world has to deal with large
amounts of information coming from test activity
recordings, which needs to be analysed in dif-
ferent ways. Many of the analysis involve heavy
computational processes that take long periods
of time, and are repeated many times with dif-
ferent sets of data. When there are a high num-
ber of test activities that need to be processed,
it can take many days to get the results.

There are many Big Data and cloud computing
platforms like Hadoop YARN2 or Microsoft Az-
ure Batch3 that could handle these processes,
but there could be some downsides: complex,
expensive and cloud dependent that may not
be allowed when it comes to military data.

The Job Process architecture proposed enables
the parallelization of data analysis processes on
a virtualized computing platform to accelerate
results and report generation.

Job Process Architecture

To provide a simple solution, we propose to
create a task queue in a database that will run
on a set of virtual machines connected to the
“local” network.

Figure 1. Job Process Architecture

Here, we can identify some definitions:

 JOB: A group of tasks that could have
a specific order of execution.

 TASK: The minimal piece of analysis,
performed by a console executable
process.

 NODE: A Windows/Linux computer
connected to the same network, run-
ning a “Job Process” Windows Service
or Linux Daemon for task queue execu-
tion.

 Parallelizable App: Any app accessi-
ble from the “local” network such as
Matlab or Python processes that can be
run in console mode, receives an ar-
gument in JSON4 for the inputs, and
generates results unattended.

 The European Test and Telemetry Conference – ettc2020 199

DOI 10.5162/ettc2020/6.7

 FxS Dataserver: Provides access to
test activity recordings.

 DataSet DB: The system provides a
database to store task results.

The core of this architecture is the ser-
vice/daemon running on the Nodes. It will peri-
odically query the database for available task
that comply with a set of rules. Once a task is
found, it will be locked down to avoid double
execution and if lock is granted, the executable
process associated to the task will be run in the
node. Once the task is completed, its status is
updated on the database and the service will
continue looking for new tasks.

Database structure

Figure 2 shows the tables used to handle the
Jobs scheduling and processing.

Figure 2 Job Process Database diagram

JOBS

Defines groups of tasks requested by a User
with a specific priority level.

TASKS

Each of the processes that comprise the Job,
with information to run the process and proper-
ties that deterime when and where this task will
be executed.

POOLS

It allows the reservation of a set of computers
for the execution of specific tasks, generally for
any type of analysis that should have priority
over any other task.

TASKEXECUTIONS

Used as a locking mechanism to prevent multi-
ple nodes executing the same task. An index on
TaskId, Status and Attempt fields, ensures that
only one Node will be able to lock the task for
execution.

TASKOUTPUTS

Stores the standard output of the task process if
any. It could be useful to trace execution errors.

TASKPREDECESSORS

Defines the order of execution of tasks for a
given Job.

Figure 3. Task Precedence example

Figure 3 illustrates an example of the order of
task execution on 3 nodes with predecessor
tasks defined. This is what happens in the first
iteration:
Task1 has no predecessors so it will be the first
executed task by node 1.

Node 2 will try to execute Task 2, but it needs that
Task 6 be executed first so, it will run Task 6.

Node 3 will check Task 3, which needs Task 7 to be
executed first, and it also needs Task 8 to be exe-
cuted first, so it will run Task 8.

The same process continues in the next itera-
tions, if the Task has a predecessor, it will try to
run that task instead. If a task is set as Final, it
won’t run until all other tasks are completed.
Also, if there is an Initial task, no task will be ran
until that task execution has finished.

NODES

The Windows service / Daemon installed on the
Nodes stores information about the characteris-
tics and status of the Host in this table. It is
used by the Job Monitor Service to detect
blocked tasks or nodes.

 The European Test and Telemetry Conference – ettc2020 200

DOI 10.5162/ettc2020/6.7

NODESTATISTICS

Used by Job Monitor Service to store infor-
mation about task execution performance to
generate statistical reports.

API

The System exposes an API that allows users
to develop tools to manage and request Job
execution.

It also allows gathering information about the
system and the status of jobs, tasks and nodes.

JOBPROCESS Service / Daemon

This is the core of the architecture. It is a ser-
vice that can be installed on any computer con-
nected to the local network. It turns it into a
Node that will start looking for tasks to run,
making system scalability really simple.

Figure 4 Service/Daemon workflow

The service queries the database every 10
seconds looking for a task suitable to execute.

FAIL CHECKS

Since the tasks that make up the jobs are ex-
ternal processes to the system architecture, we
must bear in mind that these tasks may not
work correctly, and some node may be blocked
for uncontrolled reasons, so the system must
be prepared to handle these situations.

Every task has 3 attempts to complete on the
node that has picked it. If it continues to fail, a
different node will try to run it once. This is to
discard the issue is related to the node. The
TaskOutputs table contains information about
the task execution and could help to investigate
issues.

When using the system DataSet database to
store the results, if a task fails to execute, the

Job Monitor service reverts the results to clear
any incomplete data.

JOB MONITOR Service
This service runs in the computer where the
API is hosted and it is responsible of system
health monitoring.

Its main functions are:

1. Gather Node task execution statistics
every minute.

2. Monitor and reset tasks running on
nodes that has been unresponsive for
more than 40 seconds, and rollback
partial results.

3. Restart blocked nodes (available for
VMWare virtual machines).

Conclusion
The Job Process System Architecture can be
easily implemented to allow scheduling heavy
computational tasks such as flight data analy-
sis. Also, it can be used to run any kind of task
that involves an unattended console App with
JSON inputs.

Nodes can be created either with physical or
virtual devices increasing the parallelization
capacity to reduce Job execution times. Instal-
lation of the JobProcess service/daemon turns
any computer connected to the system network
into a node that will execute tasks.

Providing “intelligence” to nodes instead of hav-
ing a task dispatcher makes the system simpler
and easier to scale, and having a distributed
architecture, a critical point of failure is avoided.

References
[1] https://www.postgresql.org/

[2] https://hadoop.apache.org/docs/current/hadoop-
yarn/hadoop-yarn-site/YARN.html

[3] http://azure.microsoft.com/en-gb/services/batch/

[4] https://www.json.org/json-en.html

