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Summary: 
In machine learning, a variety of algorithms are available for feature extraction. To obtain reliable fea-
tures from measured data, the propagation of measurement uncertainty is proposed here in line with 
the Guide to the Expression of Uncertainty in Measurement (GUM). Recently, methods for the discrete 
Fourier and Wavelet transform have been published. Here, the Adaptive Linear Approximation (ALA) as 
a further complementary feature extraction algorithm is considered in combination with an analytical 
model for the uncertainty evaluation of the ALA features. 
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Motivation 
One of the most important advances in sensor 
technology has been the development of smart 
sensors. These sensors carry out internal signal 
processing, e.g. for machine learning, in addition 
to data acquisition. For data analysis with smart 
sensors, a fully automated machine learning 
toolbox (see Fig. 1) has been developed [1] 
which can be used without any expert knowledge 
and without knowledge of a physical model of the 
process. In this toolbox, five complementary al-
gorithms for feature extraction (FE) and three for 
feature selection (FS) are combined and both 
classification based on the best combination of 
FE/FS and validation can be carried out. For the 

FE, Adaptive Linear Approximation, Principal 
Component Analysis and the first four statistical 
moments are used to extract features in the time 
domain. For extracting features in the frequency 
domain, the Best Fourier Coefficient method is 
used and for the time-frequency domain the Best 
Daubechies Wavelet method is applied. In this 
unsupervised step, as many features as possible 
are extracted. After that, a supervised feature se-
lection is performed either with simple Pearson 
correlation to the target or complex methods, i.e. 
Recursive Feature Elimination Support Vector 
Machine or RELIEFF. The objective of this step 
is to concentrate as much information as possi-
ble in as few features as possible and to remove 

H. AI approaches in measurement 

Fig. 1 Schematic of the algorithms implemented in the software toolbox [2] 
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features with low information content and redun-
dant features from the set of features extracted 
in the previous step.  

However, none of the methods within the toolbox 
so far consider measurement uncertainty. Re-
cently, propagation of uncertainties for Discrete 
Fourier transform (DFT) [4] and Discrete Wave-
let decomposition (DWT) [to be published soon] 
have been proposed. In this contribution, the 
propagation of uncertainties in line with the 
Guide to the Expression of Uncertainty in Meas-
urement (GUM) [3] is applied to feature extrac-
tion with Adaptive Linear Approximation (ALA). 

Results 
ALA approximates a certain time segment of 
sensor data or a measurement cycle [1] with lin-
ear segments of variable length. The mean and 
the slope of each segment are extracted as fea-
tures. Dividing the cycle into many segments 
leads to many features together with a small ap-
proximation error and vice versa. When there is 
no significant decrease of the approximation er-
ror when performing an additional split, the algo-
rithm stops automatically. In Fig. 2, the approxi-
mation of an original measurement cycle by ten 
segments is shown. 

Fig. 2. Approximation X’ by mean values (uneven in-
dices) and slopes (even indices) of ten segments de-
termined by ALA compared to the original cycle X 
(shifted for better clarity). 

Since the calculations below are the same for 
every cycle, they are shown here for one cycle 
only. Let 𝑌𝑌 = (𝑦𝑦1, … , 𝑦𝑦𝑛𝑛) ∈ ℝ1×𝑛𝑛 denote the real-
valued time-domain signal, i.e. one cycle. The 
result of the ALA for this cycle 𝑌𝑌 is given by 

𝐹𝐹 = (𝑦𝑦1̅̅̅, … , 𝑦𝑦𝑢𝑢3+1̅̅ ̅̅ ̅̅ ̅, 𝑏𝑏1, … , 𝑏𝑏𝑢𝑢3+1) ∈ ℝ1×2(𝑢𝑢3+1), 
where 𝑦𝑦k̅̅ ̅ denotes the mean value and 𝑏𝑏k the 
slope of the 𝑘𝑘-th segment, respectively, of a cy-
cle for 𝑘𝑘 = 1, … ,𝑢𝑢3 + 1. 𝑢𝑢3 is the number of splits 
and therefore, 𝑢𝑢3 + 1 the number of segments 
into which the cycle is split.  
The mean value and slope for the 𝑘𝑘-th segment 
are determined by 

𝑦𝑦𝑘𝑘̅̅ ̅ = 𝑓𝑓(𝑦𝑦𝑖𝑖) =  1
𝑣𝑣𝑘𝑘+1−𝑣𝑣𝑘𝑘+1

∑ 𝑦𝑦𝑖𝑖𝑣𝑣𝑘𝑘+1
𝑖𝑖=𝑣𝑣𝑘𝑘    

and  

𝑏𝑏𝑘𝑘 = ℎ(𝑦𝑦𝑖𝑖) =
∑ (𝑡𝑡𝑖𝑖 − 𝑡𝑡�̅�𝑘)(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑘𝑘̅̅ ̅)𝑣𝑣𝑘𝑘+1
𝑖𝑖=𝑣𝑣𝑘𝑘
∑ (𝑡𝑡𝑖𝑖 − 𝑡𝑡�̅�𝑘)2𝑣𝑣𝑘𝑘+1
𝑖𝑖=𝑣𝑣𝑘𝑘

. 

For the propagation of uncertainties according to 
GUM, the sensitivities of the mapping 𝑌𝑌 ↦ 𝐹𝐹 are 
given by 

𝑐𝑐𝑘𝑘,𝑗𝑗 =  𝜕𝜕𝑦𝑦𝑘𝑘̅̅ ̅̅𝜕𝜕𝑦𝑦𝑗𝑗
= 1

𝑣𝑣𝑘𝑘+1−𝑣𝑣𝑘𝑘+1
   

and  

𝑑𝑑𝑘𝑘,𝑗𝑗 =  𝜕𝜕𝑏𝑏𝑘𝑘𝜕𝜕𝑦𝑦𝑗𝑗
= 𝑡𝑡𝑖𝑖 − 𝑡𝑡�̅�𝑘
∑ (𝑡𝑡𝑖𝑖 − 𝑡𝑡�̅�𝑘)2𝑣𝑣𝑘𝑘+1
𝑖𝑖=𝑣𝑣𝑘𝑘

, 

for 𝑗𝑗 = 𝑣𝑣𝑘𝑘 , … , 𝑣𝑣𝑘𝑘+1. Thus, the sensitivity matrix 
has a block structure and is given by 

𝐉𝐉�̅�𝐲,𝐛𝐛
𝐦𝐦 = (𝐂𝐂𝐃𝐃) ∈ ℝ2(𝑢𝑢3+1)×𝑛𝑛. 

In the sensitivity matrix, the matrix  
𝐂𝐂 ∈ ℝ(𝑢𝑢3+1)×𝑛𝑛 denotes the upper submatrix and 
has the entries (𝑐𝑐𝑘𝑘,𝑗𝑗)𝑘𝑘=1,…,𝑢𝑢3,𝑗𝑗=𝑣𝑣𝑘𝑘,…,𝑣𝑣𝑘𝑘+1

. For the 

submatrix 𝐃𝐃 ∈ ℝ(𝑢𝑢3+1)×𝑛𝑛, simply replace 𝐂𝐂 by 𝐃𝐃 
in the statement above. 
The given covariance matrix of the input quanti-
ties 𝐔𝐔𝐲𝐲 ∈ ℝn×n leads to the following expression 
for the covariance matrix 𝐔𝐔𝐅𝐅 ∈ ℝn×n associated 
with 𝐹𝐹: 

𝐔𝐔𝐅𝐅 =  𝐉𝐉�̅�𝐲,𝐛𝐛
𝐦𝐦 ⋅ 𝐔𝐔 ⋅ 𝐉𝐉�̅�𝐲,𝐛𝐛

𝐦𝐦  

𝐔𝐔𝐅𝐅 =  (
𝐂𝐂𝐔𝐔𝐲𝐲𝐂𝐂𝐓𝐓 𝐂𝐂𝐔𝐔𝐲𝐲𝐃𝐃𝐓𝐓

(𝐂𝐂𝐔𝐔𝐲𝐲𝐃𝐃𝐓𝐓)𝑻𝑻 𝐃𝐃𝐔𝐔𝐲𝐲𝐃𝐃𝐓𝐓) . 

This block structure of the covariance matrix 𝐔𝐔𝐅𝐅 
can be used to deal with computer memory is-
sues. Since 𝐔𝐔𝐅𝐅 is symmetric, only three blocks 
must be stored, see also [4]. 
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