# Innovative hydrogen sensors in fuel cell vehicles

Olaf Kiesewetter<sup>1</sup>, Alexander Kraußer<sup>1</sup>, Nils Kiesewetter<sup>1</sup>, Jürgen Müller<sup>1</sup>, Marcus Bose<sup>1</sup>, Matthias May<sup>1</sup>

#### **Summary:**

For the measurement of  $H_2$  concentrations in the exhaust gas of automotive fuel cells and in its vehicle environment an active diversified-redundant hydrogen gas sensor system will be developed. The combination of a selective metal oxide semiconductor gas sensor and a thermal conductivity detector as well as suitable signal preprocessing enables an application-specific  $H_2$  sensor system with high sensitivity, selectivity, stability and safety. Based on updated application specific sensor requirements the work status and current results of the project focused on the current development state of the ambient gas sensor including measurement results will be presented.

**Keywords:** H<sub>2</sub>-sensor, fuel cell, monitoring, ambient, exhaust gas, automotive, diversified-redundant

# Used gas sensor principle for $H_2$ measurement

Technical objectives, requirements and basics for the development of a highly integrated miniaturized humidity compensated H<sub>2</sub> sensor systems for the use in exhaust gas and ambient monitoring systems of automotive fuel cells are described in [1]. The gas sensor systems to be realized are based on an innovative combination of a H<sub>2</sub> selective metal oxide semiconductor gas sensor and a thermal conductivity detector as well as a suitable signal preprocessing [2]. Based on this patented Semicon® principle application-specific H<sub>2</sub> sensor systems with high sensitivity, selectivity, stability and safety for various applications are realizable [3]. Following up [1] in this paper the current development state of the ambient gas sensor is described.

#### Application specific sensor requirements

For the intended automotive application of H<sub>2</sub> sensors various properties and technical parameters of the sensors must be realized. These are in particular, additional to the described active diversified-redundance [1] [2], integrated safety related functions (e.g. errors will be signaled during the measurement procedure), icing resistance (ready for operation after defrosting), resistance to deionized water (as condensate of the fuel cell), certifiability for use in safety-critical systems, perspective suitability of the sensor concept for large series production, the validatability for automotive applications up to compliance with the target costs. Tab 1 shows target parameters for both the H<sub>2</sub> sensor types to be developed.

Tab. 1: Selected technical target parameters for the  $H_2$  Sensors (Ambient and Exhaust)

|                                      | •                                                                                                                    |                                  |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Parameter                            | H <sub>2</sub> Sensor<br>Ambient                                                                                     | H <sub>2</sub> Sensor<br>Exhaust |
| H <sub>2</sub> measurement range     | 1 ppm - 10 Vol%                                                                                                      |                                  |
| Accuracy                             | $\pm$ 30 % from measured value ( $\leq$ 1 % H <sub>2</sub> ), $\pm$ 10 % from measured value (> 1 % H <sub>2</sub> ) |                                  |
| Operating hours                      | ≥ 8.000 h                                                                                                            | ≥ 6.000 h                        |
| Lifetime                             | ≥ 15 Years                                                                                                           | ≥ 10 Years                       |
| On/Off cycles                        | ≥ 45.000                                                                                                             | ≥ 30.000                         |
| Mileage                              | ≥ 300.000 km                                                                                                         |                                  |
| Resistances to chemical substances   | CO, $C_6H_6$ , $C_7H_8$ , $NH_3$ , $NO$ , $NO_2$ , $O_3$ , $SO_2$ , ammonium sulphates/nitrates, HMDS,               |                                  |
| Ready for operation after defrosting | ≤ 5 s                                                                                                                |                                  |
| Operating tem-<br>perature           | -40°C - +85 °C/+125°C                                                                                                |                                  |
| Dew point                            | ≤ 40°C                                                                                                               | ≤ 80°C – 95°C                    |
| Power supply U <sub>b</sub>          | 12 V DC – 16 V DC                                                                                                    |                                  |

## Laboratory sample of the ambient H<sub>2</sub> sensor

Fig.1 shows the block diagram of a first laboratory sample of an integrated  $H_2$  sensor system for ambient monitoring. In the sensor is an ceramic one-chip  $H_2$  MOX/TCD gas sensor element and a platinum thin-film temperature sensor element as reference sensor as well the sensor electronics for sensor control, signal

<sup>&</sup>lt;sup>1</sup> UST Umweltsensortechnik GmbH, Dieselstr. 2 und 4, 99331 Geratal OT Geschwenda o.kiesewetter@umweltsensortechnik.de

preprocessing, communication, I<sup>2</sup>C-interface and power supply integrated. The sensor elements are realized in hybrid-technology: ceramic carrier substrate (Al<sub>2</sub>O<sub>3</sub>) with a microstructured platinum thin-film layer, covered with a passivation layer, specific layers for contacts and locking as well as a gas-sensitive metal oxide (MOX) layer (H<sub>2</sub>-selective) for the MOX gas sensor element [1] [2] [4].

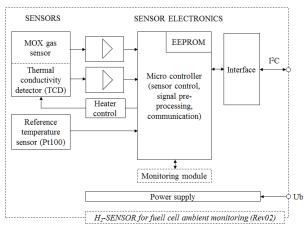



Fig. 1 H<sub>2</sub> Semicon<sup>®</sup> sensor for ambient monitoring of an automotive fuel cell – block diagramm

Fig. 2 shows an exploded view of the first laboratory sample of the  $H_2$  sensor for ambient measurement, Fig. 3 shows the PCB with the sensor elements and the capped sensor sample (LxWxH ca. 17x13x7 mm).

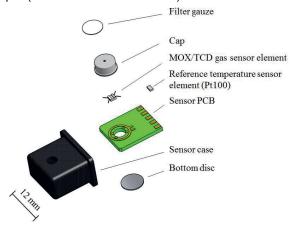



Fig. 2 H<sub>2</sub> Semicon<sup>®</sup> sensor for ambient monitoring of an automotive fuel cell – exploded view



1: GND, 2: VCC (operating voltage), 3: SDA (I<sup>2</sup>C), 4: SCL (I<sup>2</sup>C), 5: Hz (heater)

Fig. 3  $H_2$  Semicon<sup>®</sup> sensor for ambient monitoring of an automotive fuel cell – left: PCB with gas sensor element; right: sample  $H_2$  sensor capped

During measurements in the laboratory test environment the  $H_2$  sensor system was exposed to various  $H_2$  concentrations. Fig. 4 shows the reactions of the MOX gas sensor and the TCD as raw signals. These raw signals can be application specific further processed.

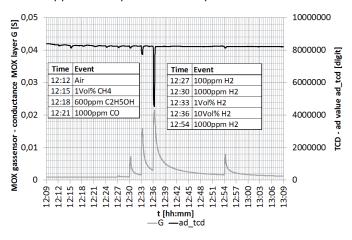



Fig. 4 Laboratory measurement of H<sub>2</sub> Semicon<sup>®</sup> sensor sample for ambient monitoring

#### Results and outlook

The presented results show that the realized and tested ambient  $H_2$  gas sensor sample is promising for further development. Sensor concept and design as well in particular the possibility of an easy sensor gas calibration are basically for a successful future development as serial product and the following transfer in serial production. Furthermore some results will be suitable for the ongoing development of the  $H_2$  gas sensor for exhaust gas monitoring systems of automotive fuel cells.

### References

- [1] Kiesewetter, O., Kraußer, A., Kiesewetter, N., Müller, J., Bose, M., Schenk, St., May, M., "H<sub>2</sub>-Sensors for Automotive Fuel Cell Application", Short paper, SMSI 2020, 12.05.2020
- [2] Kiesewetter, O., Kraußer, A., Kiesewetter, N., Müller, J., Bose, M., Schenk, St., May, M.: "Innovative H<sub>2</sub>-Sensorik für Brennstoffzellen-Fahrzeuge", Tille, T. (Herausgeber), Automobil-Sensorik 3, pp. 97-114, ISBN 978-3-662-61259-0, Springer-Vieweg, Springer Verlag GmbH, Berlin, 2020
- [3] Ewert, A., Kiesewetter, O., Kittelmann, S., Melchert, V., "Verfahren zur Erfassung brennbarer Gase, insbesondere zur Erfassung von Wasserstoff / Method for detecting combustible gases, in particular hydrogen", European Patent, No. EP000001621882B1, 02.06.2005.
- [4] Kiesewetter, O., Kohl, C.-D., Melchert, V., Bauersfeld, D., May, M., "Innovative Plattform für keramische Sensoren als Basis für automotive Applikationen", In: Tille, T., et al., Sensoren im Automobil IV, 236-259, Haus der Technik Fachbuch Band 119, ISBN 978-3-8169-3066-2, Expert-Verlag, 2011.