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Summary: 
This contribution summarizes on recent findings of planar Bragg grating sensors, functionalized with 
cyclodextrins, for the detection of ozone depleting trichlorofluoromethane. Detection limits as low as 
5 ppm are feasible whereas sensitivity and dynamic depend on the employed cyclodextrin class. The 
prospect of transferring the technology from silicas to polymer-based devices is also presented. 
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Introduction 
Once an auspicious chlorofluorocarbon, widely 
employed as propellant and refrigerant, the 
usage and fabrication of trichlorofluoromethane, 
also referred to as CFC-11 or R-11, is now 
strictly prohibited due to its vast ozone deple-
tion potential [1]. Nevertheless, the substance is 
still released nowadays, for example during the 
recycling of obsolete cooling devices or even in 
illegal production plants [2].  

 
Fig. 1. Working principle of a planar Bragg grating 
sensor functionalized for CFC-11 sensing via cy-
clodextrin coatings.  

Thus, reliable and sensitive detection of CFC-
11 is still of vital importance for the society and 
yet continuously a technological challenge for 
modern sensors. Optical Bragg gratings consti-
tute a promising technology for this task, since, 
besides low weight, they offer outstanding elec-
tromagnetic, chemical and thermal resistance. 

However, they necessitate functionalization for 
the detection of CFC-11, which can be 
achieved by coating the sensitive Bragg grating 
region with cyclodextrins (CDs). Due to their 
molecular structure and composition, CDs are 
able to form a non-covalent host-guest complex 
with CFC-11, as illustrated in Fig. 1. Coating a 
planar Bragg grating (PBG) device with CDs 
enables quantification of the CFC-11 molecule 
abundance via the evanescent field interaction 
of guided mode and functional coating, which 
leads to a shift of the PBG’s modal Bragg re-
flection peaks λB,TE and λB,TM. Based on their 
composition, CDs are classified as α-, β- or γ-
cyclodextrin. Further modification of its solubili-
ty, viscosity and selectivity, is adapted by sub-
stitution of the CD’s hydroxyl groups.  

Sensor Response 
An overview of the employed CD derivatives is 
given in Tab. 1 , while Fig. 2 depicts the respec-
tive Bragg wavelength shift ΔλB of both modal 
reflection peaks as a function of the CFC-11 
content, diluted in nitrogen. It is found that, in all 
cases, the maximum response of the TE reflec-
tion peak is about ten times larger than that of 
the TM signal. Per-methyl substituted deriva-
tives exhibit maximum wavelength shifts up to 
Tab. 1: Per-substituted cyclodextrin derivatives. 

Substitute α-CD β-CD γ-CD 

Methyl CD1 CD2 CD3 

Ethyl CD4 CD5 CD6 

Allyl CD7 CD8 CD9 
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Fig. 2. Bragg wavelength shift of both modal (TE & TM) reflection peaks as a function of CFC-11 concen-
tration in nitrogen, for α-, β- or γ-cyclodextrin derivative coatings with various hydroxy substitutions.  

1200 pm (CD2), which results in a detection 
limit of 5 ppm. This value is about 400 times 
larger than that of an uncoated PBG. The signal 
deflection of per-ethyl- and per-allyl substituted 
derivatives, however, is reduced. Albeit, in con-
trast to the determined sensitivities, these de-
rivatives show a significantly faster temporal 
response when the sensor is exposed to CFC-
11 in nitrogen. For example, the rise times for 
CD2, CD5 and CD8, at 1 vol% CFC-11, are 
1435 s, 71 s and 45 s, respectively. Conse-
quently, it is feasible to tailor the functionalized 
PBG’s behavior by employing the appropriate 
CD coating [3]. 

Spontaneous Crystallization 
Exposing a PBG coated with CD1 to a CFC-11 
content of at least 35 vol% leads to spontane-
ous crystallization of CFC-11 on the surface of 
the PPBG, as depicted in Fig. 3.  

 
Fig. 3. Signal loss due to spontaneous crystallization. 
Inset: Sensor with crystallized surface and micro-
scopic image thereof.  

Within a timeframe of 5.5 s, this leads to com-
plete signal loss due to a drastic refractive in-
dex increase of the functionalization coating 
and / or scattering losses by the structural re-
configuration of the crystallized surface [4].  

Conclusion and Outlook 
In conclusion, PBGs functionalized with CDs 
are well-suited for the detection of volatile tri-
chlorofluoromethane, whereas sensor sensitivi-
ty and response time can be adapted by em-
ploying appropriate CD derivatives. CFC-11 
quantities above 35 vol% lead to spontaneous 
crystallization of the coating which can be ex-
ploited for the development of new filter and 
storage concepts [5]. While all PBGs used in 
this study are SiO2 based, future research will 
focus on transferring the demonstrated meth-
odology on polymer-based planar devices and 
the development of new affinity materials.  
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