
DAV³E – a comprehensive toolbox for multisensor data 
fusion not only for gas sensors 

Manuel Bastuck1,2*, Tobias Baur1, Tizian Schneider1,3, Andreas Schütze1,3 
1 Lab for Measurement Technology, Saarland University, Saarbrücken, Germany 

2 Division of Applied Sensor Science, IFM, Linköping University, Linköping, Sweden 
3 ZeMA – Centre for Mechatronics and Automation gGmbH, Saarbrücken, Germany 

*m.bastuck@lmt.uni-saarland.de 

Abstract 

DAV³E (Data Analysis and Verification/Visualization/Validation Environment) is an object-oriented 
MATLAB toolbox developed to facilitate the process of building a statistical model out of data 
generated by cyclically driven sensors or cyclic (industrial) processes. Evaluation of such data usually 
involves several steps of preprocessing and dimensionality reduction until a good classification or 
regression model can be built. However, it is rarely known which combination of algorithms and 
parameters will produce the best result due to its strong dependence on data structure. DAV³E allows 
data exploration, including visualizations at each step, with an interactive, modular GUI. When a good 
workflow has been found for the data structure at hand, it can be exported to a command line script for 
batch processing of big data collections. 

Key words: virtual multisensor, big data, automated evaluation, TCO, condition monitoring 

Introduction 

Temperature cycled operation (TCO) is often 
used to increase the sensitivity and selectivity 
of chemical gas sensors [1]. TCO exploits that a 
gas sensor changes its reaction to a gas dras-
tically depending on its operating temperature. 
Thus, a sensor array can be simulated with only 
one physical sensor operated at different 
temperatures, a concept known as virtual 
multisensor [2]. The shape of the temperature 
cycle depends on the type of the sensor; 
however, temperature steps or ramps are 
commonly used. This concept has also been 
expanded to other device parameters, like the 
gate bias of silicon carbide based field effect 
transistors (SiC-FET) [3], and to cyclic 
processes, e.g. the work cycle of a hydraulic 
machine for on-line condition monitoring to 
predict machine faults [4]. 

Workflow 

The resulting array can be interpreted as one 
virtual sensor for each sample in a cycle, e.g. 
600 virtual sensors for a cycle of 60 s, recorded 
at 10 Hz. Most of those sensors give redundant 
information as parameter cycling and chemical 
reactions are relatively slow. Both the large 
number of sensors and information redundancy 
can cause problems with classification or 
regression algorithms, rendering them instable 
or inapplicable at all [5]. Therefore, the 
dimension of the data must be reduced. In a 

first step, this is done manually by feature 
extraction, i.e. computing shape or statistical 
features of the cycle signal, e.g. the mean or 
slope of a plateau or ramp, respectively, or a 
statistical moment of all samples in a certain 
area of a cycle. Instead of every sample, these 
values are then used for further processing, so 
the aim is to have as few of them as possible 
which contain as much of the initial information 
as possible. Alternatively, multivariate methods 
like principal component analysis (PCA, [6]) can 
be applied directy. However, manual selection 
of interesting cycle regions by an experienced 
scientist can often give better results, especially 
for new, unknown data structures. 

Before and after feature extraction, the data can 
be preprocessed to remove outliers, normalize 
cycles to reduce drift, or standardize features to 
make them equally important to variance-based 
methods like PCA. 

 

Fig. 1. Steps in the model building process. 

Sieveke
Schreibmaschinentext
DOI 10.5162/6EuNetAir2016/13



Following the feature preprocessing, a 
classification or regression model is trained. For 
both kinds of model, the actual target, e.g. a 
certain gas or fault type, must be known for 
each cycle. This information is collected in a 
target vector with as many entries as there are 
cycles – categorical values for classification or 
numerical values for regression. 

The trained model must be validated to make 
sure it is not overfitted [5]. Besides another, 
independent dataset, which is often not 
available, this can be done with k-fold cross-
validation (CV) [7]. Here, the whole dataset is 
divided into k parts of which k-1 are used to 
build a model. The remaining part is treated as 
unknown data predicted by the model, and the 
results are compared with the correct class 
known from the target vector. This is repeated k 
times so that each part has been predicted 
once. If the model is overfitted, its prediction 
ability will be poor which manifests in a high 
false classification rate. 

Fig. 1 shows an overview over the complete 
workflow for building a statistical model from 
raw sensor data. 

Class framework and implementation 

DAV³E is designed in a way that all the 
previously mentioned steps, starting at the raw 
data and ending with a validated model, can be 
done in the same environment. Moreover, a 
wide variety of common and proprietary file 
formats can be imported. The data from a file is 
divided into “sensors”, one for each data 
stream. This enables large flexibility later, as 
e.g. the time can be treated as a sensor to see 
if the model is sensitive to signal drift over time. 
“Clusters” are groups of “sensors” with identical 
sampling rate and starting time. If this 
information is available it is automatically 
considered throughout the process, so that 
sensors with e.g. different sampling rates can 
still be fused. “Clusters” are, in turn, part of a 
“measurement”. The “measurement” defines 
the environmental parameters at each point in 
time, which are later used to build target 
vectors. Moreover, while “clusters” allow adding 
more sensors to a model (parallel fusion), 
“measurements” are fused in series, providing 
additional cycles for a model. 

All algorithms working directly on the data, like 
preprocessing, dimensionality reduction, 
visualization, and classification, are derived 
from a common base class. This class surveys 
distinct folders for new algorithm definitions in 
the form of a function with a defined interface. 
In this way, adding new algorithms to the 
framework is easy even for less experienced 
users. 

A “model” contains a sorted list of all functions 
to apply to the data and executes them one by 
one during the training. When a model shall be 
used in the command-line, all it takes is to call 
the train method of the “model” object with the 
desired raw data. 

A “project” contains all objects and data and 
serves as root to easily load and save all 
configurations. The “sensor” class is designed 
in a way that raw data does not have to be 
stored in the project, but can reside in the 
original files besides the project, which is 
especially important for big data (on the order of 
100 GB and above). 

GUI and modules 

The GUI follows a modular approach which 
provides both guidance for the user through the 
process and easy extendibility. The modules 
basically replicate the steps described in the 
Workflow section. 

The Import module reads a wide range of file 
formats and converts them into the internal 
sensor/cluster/measurement structure. Virtual 
sensors can be computed with predefined 
formulas (e.g. the resistance as voltage divided 
by current). 

The Preprocessing module (Fig. 2) contains two 
different visualizations of the sensor signal. One 
is the cyclic view, which shows one or more 
complete cycles in the same graph. The other 
one is the quasistatic signal, where the same 
point out of each cycle is drawn over time, 
giving the impression of a statically operated 
sensor. While the cyclic view is good to identify 
differences in cycle shape for, e.g., two different 
gases, the quasistatic view gives an impression 
of the sensitivity of the sensor at a distinct point 
in the cycle. One or more preprocessing steps 
can be applied in this module, ranging from 
eliminating outliers to dividing each cycle by its 
mean value to reduce baseline drift. The result 
of the preprocessing is shown together with the 
raw data in the graphs, helping to assess the 
effectiveness of the preprocessing. It is possible 
to create many different preprocessing chains 
and apply them to the sensors individually. In 
this way, changes to a certain preprocessing 
chain influence a whole group of sensors. 

In the module Cycle Ranges (Fig. 3), the 
quasistatic signals chosen during the 
preprocessing are shown, giving an overview of 
the whole measurement. In lab tests, the usual 
case is to have time frames of similar 
environmental conditions, e.g. the same gas for 
100 cycles, followed by another gas for the next 
100 cycles. To simplify target vector generation, 
these ranges of cycles can be selected in this 



graph and tagged with the current 
concentrations of all gases appearing during 
the measurement. Instead of selecting ranges 
manually, they can also be loaded from 
compatible files from measurement equipment. 

The Grouping module works on the previously 
selected cycle ranges. It can generate simple 
target vectors automatically, based on cycle 
range tags from the previous module. 

Alternatively, target vectors can be built by 
assigning a value (numerical or categorical) to 
each range. These are the target values for the 
classifier training for all cycles contained in that 
specific range. To assist the user and prevent 
typos, the ranges are colored with different or 
identical color depending on whether they 
belong to different or identical groups. 

In the Feature Extraction module (Fig. 4), 
shape-describing features of the cycle are 
defined and computed. One graph shows an 
average cycle for each cycle range, helping to 
identify interesting differences between the 
 

 

Fig. 2. Preprocessing module. The upper graph 
shows two quasistatic signals at the two points in a 
cycle selected in the bottom graph. The bottom graph 
shows the three cycles selected in the upper graph. 
The selected points can be dragged with the mouse. 

 

Fig. 3. Cycle Range module. The graphs show the 
quasistatic signals and the ranges of cycles that will 
be used for training. Each range can have a color for 
better identification as well as components, like 
concentration of a gas or severity of a fault. 

groups. As before, ranges can be defined 
directly in the graph. Each feature, i.e. mean 
value, slope, or max value, to mention only a 
few, can have individual ranges because it is 
rarely useful to compute, e.g., both the slope 
and the mean of a range. A live preview of the 
features computed from the average cycles is 
shown in another graph, helping to estimate the 
discrimination ability of the chosen features. 

In the Model module (Fig. 5), the previously 
computed features are used as training data for 
a classification or regression model. Prior to 
that, they can be preprocessed in different 
ways, e.g. be centered or standardized. 
Although standardization is often considered an 
important step, especially when employing 
variance-based methods like PCA, there is 
evidence that standardized features can also 
produce a worse model then raw features as 
they over-emphasize noise [8]. This is only one 
example that there is no standard procedure to 
deal with this kind of data. The same 
preprocessing methods can be applied to the 
target vectors if they are numerical, which can 
be useful if the model shall be trained on, e.g. 
double-logarithmic data. Any preprocessing of 
the target vector is accounted for in the model 
result, i.e. the result is on a real and not on a 
preprocessed scale. Different dimensionality 
reduction algorithms like linear discriminant 
analysis (LDA, [5]) or PCA, or chains of those 
algorithms, can then be applied to the features 
before training a classifier (k nearest neighbors 
(kNN), Mahalanobis distance, etc.) or regressor 
(linear regression, partial least squares 
regression [9], etc.). A validation method like k-
fold cross-validation can be added to the 
training with one click and provides the 
validation result as root mean square error 
(RMSE) or misclassification rate for regression 
or classification, respectively. The results are 
visualized in many ways, including confusion 
matrices, scatter plots, histograms or territorial 
plots (Fig. 5). 

Fig. 6 shows an example for a result that has 
been achieved by applying the described data 
evaluation techniques with our framework. The 
raw data comes from a SiC-FET gas sensor 
driven with a cycle comprising four temperature 
plateaus within 60 seconds at a sampling rate 
of 10 Hz. Each cycle was divided by its mean 
value to eliminate sensor drift, followed by 
computing the mean value of ten equidistant 
ranges for each cycle. During the 
measurement, the sensor was exposed to air 
and three target gases at three concentrations 
each, i.e. benzene (1,3,5 ppb), naphthalene (5, 
20, 35 ppb) and formaldehyde (50, 100, 
150 ppb). The features were standardized, 



projected onto two dimensions using LDA, and, 
eventually, 10-fold cross-validation with a 
Mahalanobis distance classifier yielded more 
than 99.5 % correctly classified cycles, 
demonstrating very good selectivity at very low 
concentrations using only one physical sensor. 

 

Fig. 4. Feature Extraction module. The bottom 
graph shows one average cycle for each cycle range. 
Features are computed for all gray ranges, here with 
logarithmically de- and increasing width. The upper 
graph shows the features for the average cycles. 

 

Fig. 5. Model module with territorial plot where the 
plot area is colored in the color of the class as which 
a point in this area would be classified. The whole 
model is defined on the left: a 2D-LDA is followed by 
a k n classifier and a k-fold cross-validation. 

 

Fig. 6. Example scatter plot demonstrating 
excellent selectivity. Percentages at the axes give 
the amount of information contained in the respective 
dimension. 

Conclusion and future work 

We have developed a MATLAB framework for 
easy evaluation of cyclic sensor data. The GUI 
guides the user through the process and makes 
it possible to try many different evaluation 
chains in a quick and easy manner to find the 
best model for a given data structure. 
Specialized visualizations throughout the GUI 
help to find out crucial steps and parameters in 
the workflow. The resulting model can be used 
in the command line for batch processing of 
large data collections. The modular layout of 
both class framework and GUI makes future 
expansion easy. We will implement automated 
parameter search which tries to optimize the 
validation result as well as on-line evaluation of 
data with a model. 

References 

[1] P. Reimann and A. Schütze, “Sensor Arrays, 
Virtual Multisensors, Data Fusion, and Gas 
Sensor Data Evaluation”; in: C.-D. Kohl, T. 
Wagner (eds.): Gas Sensing Fundamentals, 

Springer, 2014, ISBN: 978-3-642-54518-4. 

[2] A. Schütze, A. Gramm, and T. Rühl, 
“Identification of organic solvents by a virtual 
multisensor system with hierarchical 
classification,” IEEE Sens. J., vol. 4, no. 6, pp. 
857–863, 2004. 

[3] C. Bur, M. Bastuck, A. Lloyd Spetz, M. 
Andersson, and A. Schütze, “Selectivity 
enhancement of SiC-FET gas sensors by 
combiningtemperature and gate bias cycled 
operation using multivariatestatistics,” Sensors 
Actuators, B Chem., vol. 193, pp. 931–940, 2014. 

[4] N. Helwig, E. Pignanelli, and A. Schütze, 
“Condition monitoring of a complex hydraulic 
system using multivariate statistics,” in 2015 
IEEE International Instrumentation and 
Measurement Technology Conference (I2MTC) 
Proceedings, 2015, pp. 210–215. 

[5] R. Gutierrez-Osuna, “Pattern analysis for 
machine olfaction: A review,” IEEE Sens. J., vol. 

2, no. 3, pp. 189–202, Jun. 2002. 

[6] H. Abdi and L. J. Williams, “Principal component 
analysis,” Wiley Interdiscip. Rev. Comput. Stat., 
vol. 2, no. 4, pp. 433–459, 2010. 

[7] M. Browne, “Cross-Validation Methods.,” J. Math. 
Psychol., vol. 44, no. 1, pp. 108–132, 2000. 

[8] M. Bastuck, T. Baur, and A. Schütze, “Fusing 
Cyclic Sensor Data with Different Cycle Length,” 
in MFI 2016 - 2016 IEEE International 
Conference on Multisensor Fusion and 
Integration for Intelligent Systems, 2016. 

[9] S. Wold, M. Sjöström, and L. Eriksson, “PLS-
regression: A basic tool of chemometrics,” 
Chemom. Intell. Lab. Syst., vol. 58, no. 2, pp. 
109–130, 2001. 

 




