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Abstract 

During the last few years, machine learning emerged as a very effective tool for data analysis and 
sematic value extraction from the large amount of data generated from deployed chemical 
multisensors devices. Many works have now highlighted the potential impact on multisensor device 
calibration, drift counteraction, data assimilation, optimal deployment of these classes of algorithms. 
Unlike 5 years ago, the huge amount of available data make possible to confirm this potential on real-
world long-term deployments. This work analyze the literature produced by EuNetAir partners 
extracting the lessons cooperatively learnt about their impact and propose a novel architecture for 
future intelligent air quality networks based on the machine learning emerging paradigm. 
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Introduction 

Air quality in city landscapes is one of the most 
concerning environmental factors affecting our 
health and quality of life. Assessing and 
forecasting air quality is now paramount for our 
society in order to limit the issues, for ensuring 
awareness and ultimately to contribute to 
ameliorate the overall air quality conditions. 
Unfortunately, air quality assessment in 
complex scenarios like city landscapes is 
hampered by costs and dimension factor when 
relying on bulky but certified analyzers. This 
cause the development of sparse 
measurement matrices that cannot cope with 
intrinsic spatial variability of air quality 
conditions due to difference in emissions and 
fluidynamic transport problems. EU regulatory 
framework and, specifically, the 2008 directive 
on air quality begun to address the issue of 
defining data quality objectives for so called 
“indicative” measurements designed to 
complement the static and coarse grained 
conventional analyzer networks [1]. Small, low 
cost and wearable/portable gas microsensors 
devices are targeted as the next revolution in 
this field allowing to build high density air 
quality networks and personal air quality 
monitoring systems. However, precision and 
accuracy of these systems is severely 
negatively affected by technological limits such 
as non-linearity, low specificity and sensibility 
to environmental conditions as well as low 
stability commonly known as the drift problem. 
Slow dynamic is also known to affect their 
capability to promptly react to rapid transient 

occurring when operating at street level in 
fixed or mobile settings (i.e. when crossing a 
gas plume emitted by a truck, while cycling 
beyond a car, while operating at a traffic stop 
sign, etc.). These ultimately prevent them to 
reach DQO levels as described by EU/2008 Air 
quality directive for indicative measurements. 
During the last few years, within the chemical 
sensing community and specifically in the 
EuNetAir community, researchers have 
conducted several studies highlighting the 
potential impact of machine learning 
techniques in this realm. Machine learning 
(ML) is a complex framework oriented to the 
development of techniques that make 
computing machines capable to deal with 
problems without being specifically 
programmed to and ultimately being able to 
generalize their knowledge to unseen 
situations. Their usage has proven useful to 
deal with several sensors limitations like low 
selectivity, concept and sensor drifts, slow 
dynamics and so on. This paper try to 
summarize, at the end of the action, the lesson 
that the community has learned through these 
years proposing a novel paradigm for truly 
intelligent air quality monitoring networks. 
 
On Field Calibration  
In the late 2000, several works have 
highlighted the impact of on field deployment 
on lab calibrated multisensor devices. The 
different and continuously changing 
environmental conditions and the complexities 
of the real world chemical mixtures make their 
lab calibration suffering from significant 
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inaccuracies. Low selectivity and interfering 
gases influence was identified as the primary 
issue leading to the introduction of  on field 
multivariate calibration techniques, i.e. 
calibration extraction processes based on the 
use of the response of all the sensor array to 
the gases encountered during a real world 
deployment. A co-located conventional 
analyzer is used as a provider of true 
concentration levels [2]. In this framework, by 
using techniques like neural networks (NN) 
these researchers managed to use non 
selectivity to their advantage improving the 
overall performances of chemical multisensor 
devices facing air quality monitoring tasks. 
These was obtained without the explicit needs 
to model the sensor response to complex 
chemical mixtures of several pollutants and 
without the need to setup long instrument 
measurement campaigns in certified 
laboratories. All sensors responses RSensi 
was functionally related with the actual 
pollutants concentrations Cj for all gases for 
which a certified reading is available (eq. 1): 

 

 
(1) 

The functional relationship was then learnt by 
example by training a machine learning tool 
like a neural network. These early results was 
then confirmed for multiple species. 
 

 

Fig. 1. Mean Absolute error on CO estimation 
obtained by a NN regressor as a function of the 
number or samples (hours) used for training phase. 
The Pirelli-ENEA dataset was used [8]. 

Performance is linked to the number of 
available sample for implementing the training 
process and one week seems the minimum 
amount for reasonable outcomes (see Ref. [2] 
and Fig. 1). Recently, these techniques 
emerged as the best performing tool for 
chemical multisensor devices in a well-known 
works series by JRC [3]. Scalability, though, 

remains an issue that can be currently solved 
only with ad-hoc systems for parallel recording 
of multiple multisensory unit responses 
together with the collocated conventional 
certified analyzers. Another issue to mention is 
the possible ”locality” effect that could limit the 
optimal performance when overall conditions 
that are significantly different from those faced 
during on field calibration are met by the 
deployed systems. Currently no information is 
available on the real extent of these potential 
issues. 
  
Drift Counteraction 
While non linearity and cross sensitivity have 
been confirmed to be positively affected by 
approaches like neural networks, drift 
counteraction has still to find an efficient 
solution ultimately affecting the possibility to 
reach the needed long term unmanned 
operation capability. However, multiple 
solutions have been proposed basing on 
machine learning techniques that seems to 
provide interesting results on a limited set of 
dataset with which they have tested. Here we 
would like to review two techniques. The first 
technique was proposed by De Vito et al. [4]. 
Based on semi-supervised learning, it seems 
to provide an interesting feature helping 
systems to learn also by unlabeled examples, 
i.e. sensors data for which a true concentration 
value is not available. As cheap as they are to 
obtain, unlabeled samples can be used to 
extend the knowledge of the machine learning 
tool obtained on a limited set of costly labeled 
samples that can only be obtained by sensors 
co-location with a conventional analyzer. This 
may actually reduce the number of labeled 
samples to use to obtain a sufficiently accurate 
calibration or to adapt the obtained knowledge 
to new situations arising from sensor poisoning 
or just seasonal environmental effects. These 
specific results have been obtained by the 
cited publication by using a one year long 
dataset recorded using a MOX based 
multisensor device on the field. The dataset is 
available on the UCI repository [8]. The second 
significant approach to long-term drift 
counteraction  may exploit continuous or active 
learning ML paradigms. In this case new 
knowledge represented by couples of sensors 
reading and true concentration levels may be 
added when available to the knowledge set of 
the machine. In this way, the tool may adapt 
his knowledge to the arising but slow drift 
effects. One of the way to achieve this 
capability was initially shown by Tsujita et al. in 
the early 2000 [5]. He and his co-authors 
shown that, in particular circumstances, the 



response of the sensors can be corrected from 
baseline drift. Practically, when the regional 
background was near to zero, this situation, 
detected by a network of analyzers and a 
simple underlying model, can be used to reset 
the zero response of the sensor. This is a 
simple and neat example in which a simplified 
spatial model may be used to counteract the 
drift effect in the sensors that feed it. However, 
adaptive learning can be also based on the 
actual temporary co-location of a multisensor 
system with a peer or conventional/certified 
analyzer. In this way, a higher accuracy 
estimation of the pollutant concentration level 
may be exchanged by the on-board machine 
learning algorithms. Eventually, the involved 
actors may ameliorate their calibration 
accuracy continuously adapting it to the 
continuously changing sensors health status 
and environmental conditions. A relevant 
example of the possibility opened by this 
technique, has been shown by L. Thiele and 
coauthors partially using simulated data [6]. 
 
Overcoming Dynamic Issues 
Slow dynamic affecting all chemical sensors 
significantly affects the overall accuracy with 
enhanced effects arising when sensors are 
subjected to rapid concentrations transients. 
These transients may become recurrent in 
mobile deployments where spatial gradients 
may be transformed in temporal gradients as 
well as near-to-road fixed deployments. These 
effects have been highlighted by a study of 
University of Cambridge and the authors by 
using a dataset recorded in the city of 
Cambridge focusing on electrochemical 
sensors systems [7]. In this work, the authors 
propose the use of dynamic machine learning 
architectures and specifically tapped delay 
neural networks. These architectures search 
for a functional relationship between the recent 
history of the sensors response and the actual 
concentration value. In this way they appear to 
be able to learn using the dynamic behavior of 
the sensor as an input actually learning to 
represent sensors inner dynamics (see fig. 2). 
As stated previously also in this case the 
capability of the network to learn this complex 
relationship may be limited by the conditions 
encountered during calibration period showing 
a “locality” effect. 
 

Intelligent Air Quality Networks 

Recent outcomes of the significant researchers 
effort in these fields can be now combined in 
order to propose a novel complete architecture 

that could represent the future of air quality 
monitoring mesh. 

 

Fig. 2. Accuracy improvement obtained by 
dynamic machine learning approach with respect to 
a static machine learning tool while estimating NO2 
true concentration at different derivative rate in a 
real world setting. 

In particular, we propose a pyramidal 
architecture combining different interacting 
systems each showing different and time 
varying performance levels cooperating to 
reconstruct a high time and space resolution 
image of the pollution in the complex city 
landscape. Basically, we envisage the 
cooperation of a hierarchy of networks of 
heterogeneous systems providing different 
precision and accuracy while measuring 
different air quality parameters simultaneously 
in different positions and while moving (see fig. 
3 and 4). Each system is intelligent in the 
sense that it is equipped with adaptive 
machine learning systems, calibrating their raw 
sensors response in a stochastic concentration 
estimation. This data can be used at different 
levels to contribute to the general assessment, 
for example, by contributing location of the 
measurement together with the concentration 
as well as uncertainty levels. In this sense, 
citizen science framework, sported by several 
recent projects, have paved a way for more 
pervasive and massive experimentations. 
Contributed data can be integrated with model 
based ad-hoc sensor fusion algorithm to 
reconstruct assessments and forecasting 
maps. Maps could then be used to provide 
accurate readings and assess and forecast 
exposure for people not having their own 
personal exposure monitor. Mobile systems, in 
particular move themselves (carried out by 
moving cars or just people) throughout the 
cities eventually meeting each other or coming 
close to conventional analyzers. Their 
calibration is known to loose accuracy and 
precision while sensor drift set in. In this sense 



their calibration is ageing but could be 
revamped by the use of fresh  precise on field 
calibrated data coming from a more accurate 
assessor either a fixed conventional analyzer, 
a freshly calibrated (or recalibrated)  
multisensor device or eventually by 

assessment coming from model based 
pollution maps. As we have seen, many of the 
needed technological tools for the described 
architecture have indeed been already 
proposed with different aims in the literature.

 
Fig. 3. Proposed architecture for future intelligent air quality monitoring networks integrating wearable, fixed and 
certified sensing devices. An accuracy mediated interaction among the different accuracy sensing modules, 
ensure the continuous learning and upgrade of the on board calibration rules. Model based interpolations provide 
real time upgraded high spatial accuracy pictures of the city air pollution levels using a data assimilation scheme. 
Model outcomes may be also used to upgrade  calibrations.

 

Fig. 4. An example of the accuracy/numerosity 
pyramid in pervasive air quality networks. 

Conclusions 

In this work we briefly review the recent 
literature highlighting the possible 
transformative impacts of machine learning 
techniques on air quality monitoring techniques 
involving the use of chemical multisensors 
units. In order to achieve truly spatially dense 
and accurate assessments, we believe that a 
significant innovation is needed at architectural 
level to correctly assimilate data from pervasive 
and mobile deployments of heterogeneous 
systems in geospatial models. To this purpose 
we briefly introduce an uncertainty mediated 
architecture integrating and exploiting the new 
possibilities opened by machine learning 
systems. 
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