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Abstract 
 

The authors present simulation results of a portable system designed for measuring thermal 
parameters of materials, mainly widespread thermal insulation materials. The proposition is to use an 
auxiliary thermometer and a trained artificial neural network to determine parameters of thermal insulation 
materials. The network is trained on data extracted from a model of a nonstationary heat flow process in 
the sample of material with a hot probe and auxiliary thermometer, based on a two-dimensional heat-
conduction model and including heat capacity of the probe handle. To solve the system of partial 
differential equations describing the model, the finite element method (FEM) was applied. The artificial 
neural network (ANN) is used to estimate coefficients of the inverse heat conduction problem for solid. 
The network determines values of the effective thermal conductivity and effective thermal diffusivity on 
the basis of temperature responses of the hot probe and auxiliary thermometer. Several configurations 
were evaluated during selection of optimal ANN architecture. The influence of measuring errors on 
identified values of the thermal parameters was also analyzed using the Monte Carlo technique. All 
calculations like FEM, training and testing processes as well as the error sensitivity analysis were 
conducted in the Matlab environment. The proposed method of parameters testing is suitable for 
temporary measurements in a building site or factory. 

 
Introduction 

The existing methods of determination of material’s thermal parameters, i.e.: heat diffusivity coefficient a, 
m2/s, heat conductivity coefficient k, W/(m2K) and specific heat cp, J/(kgK), are based mainly on 
stationary heat transfer conditions [1-5]. These methods allow determining only a single thermophysical 
parameter of the tested material. They require the use of big and heavy measuring systems and a long 
period of time to conduct the measurement. The authors do not know a commercial solution of portable 
measuring system which, in relatively short time, could assess fulfilling the requirements by insulating 
materials delivered to a building site or leaving the factory from the point of view of thermal conductivity. 
Therefore, it seems to be crucial to work on design of such a measuring system. The research in this field 
concentrates, among other things, on possibility of application of artificial neural networks to solve the 
coefficient inverse problem of diffusion process. This paper is also concentrated on this issue and 
presents some results obtained during realization of the research grant. 

Heat diffusion in the material with inserted hot probe 

The proposed method is based on the classic transient line heat source (LHS) method, called 
sometimes the hot wire method or the probe method [6-9]. The LHS method is usually used to determine 
heat conductivity of loose materials or viscous liquids [10-13]. In the case of measurement of 
thermoinsulation material’s properties using the hot probe, the known solutions based on approximate 
solution of the Fourier equation, commonly used, are inaccurate. The conditions mentioned there, e.g. [7, 
8, 10, 12], cannot be satisfied in general. Moreover, the heat capacity of the hot probe and the testing 
sample of material are comparable. So, our proposition of the measurement system with the hot probe 
consists in evaluating three thermal parameters simultaneously. It is sufficient to determine two of them, 
because they are related by equation: 

pc

k
a

⋅

=

ρ

      (1) 

The measurement system should record the temperature changes at the heat probe TH and auxiliary 
thermometer TX. The proposed distance between the hot probe and the thermometer is 8 mm – Fig. 1a. 
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a)       b) 

    
 

Fig. 1. Predesign of thermal probe (a) and a half section of sample with discrete mesh (b) 
 

To obtain the temperature field in the sample of material with inserted hot probe, the finite element 
method (FEM) was applied [14]. In a two-dimensional XY co-ordinate, the temperature field, assuming the 
simplified boundary condition ∂T/∂x=0, was calculated using the Partial Differential Equation Toolbox 
integrated with the Matlab environment. The values of thermal parameters of the material sample, made 
of foamed polystyrene, were set to: a = 2.3⋅10-6 m2/s, k = 0.04 W/(m⋅K). These values ensure negligible 
influence of the boundary condition, hence the modelled sample can be treated as infinitely extensive. 
The auxiliary thermometer placed in the tested probe can disturb the thermal field, therefore its presence 
should be included in the model. The assumed dimensions are as follows: diameter of hot probe is 2 mm 
and diameter of the auxiliary thermometer is 1 mm. Thermal parameters of the hot probe, which is made 
of copper, are a = 116⋅10-6 m2/s, k = 401 W/(m⋅K) and the thermal parameters of the auxiliary 
thermometer, which is made of stainless steel, are 3,88⋅10-6 m2/s and k = 15 W/(m⋅K). These values were 
taken from [15]. A half section of the sample with the thermal probe and discrete mesh is presented in 
Fig. 1b. The determination of heat diffusion by means of minimization of the mean squared error was 
presented in previous papers [4,16]. Its advantages are the possibility of taking into consideration 
arbitrary chosen, boundary conditions variable during data collecting and input temperature profile during 
sample heating. The disadvantage is heavy relatively computational burden. In this work, it is attempted 
to investigate usability of the neural network, presented in Fig. 2, in solving the coefficient inverse 
problem [17-20] as an alternative to the classical solutions. 

Artificial neural network in inverse problem solution 

Using mathematical model of heat diffusion and FEM there were generated training vectors of nine 
selected instantaneous values of the temperature responses of the hot probe TH(t) and the auxiliary 
thermometer TX(t) in the sample for 10x10 combinations of values of a∈1.0÷3.0⋅10-6 m2/s and 
k∈3.0÷5.0⋅10-2 W/(m⋅K) for time interval 100 s. The training input vectors of the instantaneous values of 
the temperature TH(t) and TX(t) is shown in Fig. 3. 

 
Fig. 2. A hypothetical architecture of the neural network with input and output quantities 

   
To verify whether the network response is correct for intermediate values of a and k from the ranges 
defined above, the responses were simulated for 100 values of heat diffusivity coefficient a from the 
range a∈1.0;3.0⋅10-6 m2/s and 100 values of heat conductivity coefficient k from the range and 
k∈3.0;5.0⋅10-2 m2/s. Consequently, in general, there were generated 10000 testing vectors.  
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a)       b) 

 
Fig. 3. Examples of the training vectors of the instantaneous values of the temperature of: a) the heating 

probe TH(t), b) the temperature of the auxiliary thermometer TX(t), where 1) a=3,0⋅10-6 m2/s, k= 
5,0⋅10-2 W/(m⋅K); 2) a=1,0⋅10-6 m2/s, k=3,0⋅10-2 W/(m⋅K). 

 
From the other side, the network should be able to approximate the model of heat diffusion with 
acceptable accuracy and simultaneously with low input error sensitivity. Many of the most popular ANN 
architectures were tested. Numbers from 1-10 associated with the ANN architecture in the list presented 
below are adequate to these included in table 1 and 2. The following networks were tested: 
• Neural networks with radial basis functions (RBFNN): 

1) classical RBFNN, 
2) generalized regression GRNN, 
3) RBFNN with given error goal, 

• Classical nonlinear neural network: 
4) three-layer classical nonlinear network with 20 neurons in first hidden layer and 10 neurons in 

second hidden layer, 25 training epochs, 
5) three-layer classical nonlinear network with 20 neurons in first hidden layer and 10 neurons in 

second hidden layer, 1000 training epochs, 
6) two-layer classical nonlinear network with 20 neurons in hidden layer, 25 training epochs, 
7) two-layer classical nonlinear network with 20 neurons in hidden layer, 50 training epochs, 
8) two-layer classical nonlinear network with 20 neurons in hidden layer, 1000 training epochs, 
9) two-layer classical nonlinear network with 10 neurons in hidden layer, 25 training epochs, 
10) two-layer classical nonlinear network with 10 neurons in hidden layer, 50 training epochs. 

Because, the volume of this paper is limited, only results of training and testing for classical RBFNN (no. 
1) are graphically presented in Fig. 4, for instance. All considered cases are summarized in table 1. 
a)       b)     c) 

 
Fig. 4. Relative error of the classical RBF network response δa for thermal diffusivity for training stage (a), 

testing stage (b) and linear regression method matching (c), where: T – given output value, 
A – network answer, R – correlation coefficient 

 
In the case of the classical radial basis function neural network, the results acknowledge its possibility to 
solve the inverse problem. For some learning parameters, the output error is negligible for training and 
testing data – marked data in table 1. However, the network structure of 100 RBF neurons is relatively big. 
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In the case of the GRNN, the “over fitting effect” was observed. Reduction of amount of the neurons or 
decreasing the size of training vector can remove this disadvantage. 
 

Table 1. Results of training and testing stages for given networks’ architectures 

 
Testing stage of neural network Training stage 

of neural network Heat diffusivity a Heat conductivity k 
A=aT+b A=aT+b 

ANN 
archite
cture |δamax| % |δkmax| % 

|δamax| % |δkmax| % R 
A b 

R 
a b 

1) 2,810-3 1,710-5 0,08 2,410-3 1 1 -1,1910-10 1 1 -2,3410-8 
2) 2,5 0,23 26 6 0,989 0,956 -1,1910-7 0,997 0,979 9,8710-4 
3) 0,08 0,07 0,8 1,2 1 1 5,4310-10 1 0,998 8,8810-5 
4) 0,01 5,010-3 0,6 0,08 1 1 4,8310-10 1 1 6,8510-6 
5) 3,810-3 1,510-3 0,03 0,01 1 1 -4,5010-11 1 1 5,9710-7 
6) 0,01 3,010-3 0,5 0,09 1 1 3,7710-10 1 1 1,2910-6 
7) 0,5 0,18 1,5 0,4 1 1 -2,1610-13 1 1 1,0410-5 
8) 0,02 0,01 0,4 0,06 1 1 -5,0010-10 1 1 3,3910-6 
9) 0,2 0,1 1,1 1,1 1 1 6,8710-10 1 0,999 2,2010-5 
10) 0,4 0,09 1,7 0,45 1 1 -1,0910-9 1 1 1,9810-5 

 
A good solution is application of the RBF network with given error goal, which automatically chooses the 
number of neurons to draw output error with error goal. Such a solution facilitates looking for an optimal 
network structure, because of automatic selection of the neurons number. Promising results were 
obtained also for the classical nonlinear network with the hyperbolic tangent transfer function in input and 
hidden layers. In the case of the hidden layer there is sufficient to use the linear activity function. A three-
layer network obtained the good performance after 25 epochs. Thanks to its flexibility the over fitting did 
not occur. Taking 1000 epochs, output error was very small, both for learning and testing vector – marked 
data in table 1. Performance of the two-layer network was also investigated. The output error was in this 
case was somewhat larger than for the three-layer network but it can be compensated by a longer 
learning period (more epochs). 

Network generalization ability is only one of many conditions that the network must satisfy. A very 
important issue is determination of sensitivity of the neural network to input quantities disturbance. Good 
ability of generalization of the chosen network going hand in hand with its small sensitivity must be proved. 
If it fails, then another network candidate for “optimal network architecture” must be selected and checked. 

Sensitivity analysis of neural network to input quantities disturbance  

It was assumed, that the following input quantities have influence on the output quantities a and k: 
temperature of the hot probe TH(t), temperature of the auxiliary thermometer TX(t), heat power PG 
supplying the hot probe and distance r between the hot probe and the auxiliary thermometer. A uniform 
symmetric distribution of probability of all input quantities was assumed with the following half widths: 
∆TH(t)=0.1 K, ∆TX(t)=0.05 K, ∆PG=1 mW/m, ∆r=0.1 mm. The Monte Carlo simulation technique was 
applied, as effective method in case of big complexity of the mathematical model. Generation of input 
quantities for 106 trials (this number is strongly recommended by [21]) and model calculation for one pair 
given thermal parameters were taken over 6 days using modern PC computer (year 2008). Hence, the 
analysis was constrained to the following five combinations of values of a and k, treated as “true” values: 

a) a=2.5⋅10-6 m2/s and k= 4.0⋅10-2 W/(m⋅K),  b) a=1.5⋅10-6 m2/s and k= 3.3⋅10-2 W/(m⋅K),  
c) a=3.5⋅10-6 m2/s and k= 4.7⋅10-2 W/(m⋅K),  d) a=3.5⋅10-6 m2/s and k= 3.3⋅10-2 W/(m⋅K),  
e) a=1.5⋅10-6 m2/s and k= 4.7⋅10-2 W/(m⋅K). 

Letters from a) to e) are used to identify the cases presented in table 2. For each pair of a and k the 
output value of the network was computed and estimates of distribution function G(a) and G(k) were 
evaluated. Because, the volume of this paper is limited, only distribution function for two estimated of 
thermal parameters for classical RBFNN are graphically presented in Fig. 5. All considered cases (10 
ANN architectures and 5 combination of a i k) are summarized in table 2. The following statistical 
parameters are included: expectation, standard deviation and 95% coverage interval, understood 
according to [22]. For better clarity of presented data, the 95 % coverage intervals closest to given (“true”) 
values were additionally marked. The best results were obtained for the RBF networks (no. 1-3). The 
three-layer ANN (no. 4) was sensitive to input signal disturbances. By taking more epochs, this sensitivity 
could be significantly reduced. For 1000 epochs, the ANN output error satisfied the design requirements 
(no. 5) and was comparable to results for the RBF networks. In case of two-layer ANNs the output error 
was a little bigger than for a three-layer ANN, but increasing the number of learning period epochs and 
number of neurons in input layer the performance of this network were comparable to the three-layer 
ANN (no. 8). 
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a)        b) 

           
Fig. 5. Distribution function for thermal diffusivity (a) and thermal conductivity (b) 

 
Tab. 2. Results of sensitivity analysis for tested ANN architectures 

 

Heat diffusivity a m2/s Heat conductivity k 
W/(m⋅K) 

Heat diffusivity a m2/s 
Heat conductivity k 

W/(m⋅K) 
AN
N 
arc
hite
ctur
e 

Give
n 

valu
es 

Expe
ctatio

n 
·10-6 

Stan
dard 
devia
tion 
·10-7 

95 % 
coverage 
interval 

·10-6 

Expe
ctati
on  

·10-2 

Stan
dard 
devia
tion 
·10-3  

95 % 
coverage 
interval 

·10-2 

A
N
N 
ar
chi
tec
tur
e 

Gi
ve
n 

val
ue
s 

Expe
ctatio

n 
·10-6 

Stan
dard 
devia
tion 
·10-7 

95 % 
coverage 
interval 

·10-6 

Expe
ctatio

n 
·10-6 

Stan
dard 
devia
tion 
·10-7 

95 % 
coverage 
interval 

·10-6 

a) 2.50 1.21 [2.27;2.74] 4.00 0.21 [3.96; 4.04] a) 2.48 2.66 [1.98;2.97] 4.05 3.52 [3.39; 4.74] 
b) 1.50 1.26 [1.26;1.75] 3.30 0.18 [3.26; 3.34] b) 1.50 2.33 [1.06;1.92] 3.30 3.67 [2.59; 3.99] 
c) 3.50 1.13 [3.29;3.72] 4.70 0.23 [4.66; 4.74] c) 3.47 2.80 [2.94;3.97] 4.67 2.46 [4.21; 5.12] 
d) 3.50 1.34 [3.25;3.75] 3.30 0.18 [3.26; 3.34] d) 3.42 3.33 [2.80;3.40] 3.28 4.27 [2.49; 4.12] 

1) 

e) 1.50 0.99 [1.31;1.70] 4.70 0.23 [4.65; 4.74] 

6) 

e) 1.49 1.20 [1.09;1.87] 4.70 2.76 [4.15; 5.19] 
a) 2.51 0.65 [2.41;2.63] 4.00 0.04 [3.99; 4.01] a) 2.53 0.27 [2.48;2.58] 4.05 0.43 [3.97; 4.13] 
b) 1.52 0.42 [1.45;1.58] 3.31 0.55 [3.22; 3.38] b) 1.49 0.23 [1.45;1.54] 3.29 0.41 [3.21; 3.37] 
c) 2.99 0.06 [2.98;3.00] 4.60 0.02 [4.59; 4.60] c) 3.41 0.29 [3.35;3.45] 4.56 0.40 [4.49; 4.64] 
d) 2.97 0.20 [2.92;2.99] 3.20 0.03 [3.20; 3.21] d) 3.33 0.30 [3.27;3.39] 3.27 0.40 [3.19; 3.34] 

2) 

e) 1.51 0.29 [1.46;1.56] 4.70 0.41 [4.64; 4.77] 

7) 

e) 1.49 0.22 [1.44;1.53] 4.70 0.46 [4.61; 4.79] 
a) 2.50 0.27 [2.45;2.55] 4.00 0.23 [3.96; 4.04] a) 2.50 0.45 [2.41;2.59] 4.00 0.57 [3.89; 4.11] 
b) 1.50 0.15 [1.45;1.53] 3.30 0.21 [3.26; 3.33] b) 1.50 0.35 [1.43;1.57] 3.30 0.55· [3.19; 3.41] 
c) 3.49 0.37 [3.43;3.56] 4.70 0.25 [4.66; 4.75] c) 3.50 0.51 [3.40;3.60] 4.70 0.61 [4.58; 4.82] 
d) 3.48 0.49 [3.40;3.57] 3.30 0.21 [3.26; 3.33] d) 3.50 0.59 [3.38;3.61] 3.30 0.56· [3.19; 3.41] 

3) 

e) 1.50 0.12 [1.48;1.52] 4.70 0.24 [4.66; 4.74] 

8) 

e) 1.50 032 [1.44;1.56] 4.70 0.58 [4.59; 4.81] 
a) 2.49 3.07 [1.91;3.05] 3.98 2.82 [3.43; 4.53] a) 2.51 2.12 [2.12;2.91] 4.00 3.22 [3.38; 4.61] 
b) 1.52 2.49 [1.09;1.99] 3.28 2.87 [2.75; 3.83] b) 1.51 2.26 [1.08;1.93] 3.30 2.87 [2.76; 3.83] 
c) 3.48 1.55 [3.18;3.77] 4.70 2.56 [4.20; 5.14] c) 3.52 3.75 [3.10;3.96] 4.70 3.56 [4.03; 5.37] 
d) 3.48 2.49 [2.99;3.95] 3.29 2.47 [2.83; 3.74] d) 3.52 3.50 [2.90;4.20] 3.30 2.97 [2.73; 3.86] 

4) 

e) 1.50 1.61 [1.16;1.78] 4.68 2.36 [4.26; 5.14] 

9) 

e) 1.50 1.82 [1.15;1.84] 4.69 3.16 [4.10; 5.31] 
a) 2.50 0.63 [2.38;2.63] 4.00 0.49 [3.90; 4.10] a) 2.50 0.71 [2.36;2.64] 4.00 1.02 [3.81; 4.21] 
b) 1.50 0.66 [1.41;1.59] 3.30 0.47 [3.21; 3.39] b) 1.50 0.57 [1.39;1.61] 3.30 1.07 [3.12; 3.49] 
c) 3.50 0.37 [3.35;3.65] 4.70 0.51 [4.60; 4.80] c) 3.49 0.84 [3.33;3.66] 4.70 1.26 [4.48; 4.95] 
d) 3.50 0.76 [3.32;3.68] 3.30 0.43 [3.21; 3.38] d) 3.48 0.84 [3.31;3.64] 3.30 0.87 [3.14; 3.81] 

5) 

e) 1.50 0.91 [1.42;1.58] 4.70 0.56 [4.59; 4.81] 

10) 

e) 1.50 0.68 [1.37;1.63] 4.70 1.36 [4.46; 4.95] 

Conclusion 

Analysis of data presented in previous chapters let us state some conclusions. The proposed method 
allows estimation of the thermal parameters assuming repeatable environmental conditions. The best 
ANN architecture was the classical nonlinear feedforward two-layer neural network with 20 neurons with 
the hyperbolic-tangent transfer function in the hidden layer and two neurons with the linear transfer 
function in the output layer. The network has 18 inputs and 2 outputs. This network was chosen from 
others as compromise between generalization ability, architecture simplicity, small output error and small 
sensitivity to input signal disturbances. The hot probe with the diameter greater than used so far can be 
applied. It would be easier to use in the industrial regime. Thermoinsulating materials can be tested in a 
place aimed to assembly them. The proposed solution can significantly reduce the complexity of a 
measuring system and finally its cost. The system could be based on a relatively cheap and simple, 8/16 
bits embedded microcontroller, for instance. The future work will be experimental verification of the 
proposed method considering many aspects like: material types, dimensions of sample, ANN 
architectures. 

SENSOR+TEST Conference 2009 - SENSOR 2009 Proceedings II 305



This work was supported by Ministry of Science and Higher Education of Poland under research grant 
No. N N505 3129 33 realized in years 2007-2009. 
 
References 
 
[1] Y. Bayazitolu and M.N. Öziik: “Elements of Heat Transfer” McGraw-Hill Book Company, New 

York, 1988. 
[2] A. Bejan, Heat Transfer.  John Wiley & Sons, New York, 1993. 
[3] J. Jurkowski. Y. Jarny and Y. Delanuay: “Estimation of thermal conductivity of thermoplastics under 

moulding conditions: an apparatus and an inverse algorithm” Int. J. Heat Mass Transfer, vol. 17 
(1997), pp. 4169-4181. 

[4] W. Minkina and S. Chudzik: “Measurement of Thermal Parameters of Thermoinsulating Materials – 
Instrumentation and Methods (title in Polish is Pomiary parametrow cieplnych materialow 
termoizolacyjnych – przyrzady i metody). Publishing House of Czestochowa University of 
Technology, Czestochowa (Poland), ISBN 83-7193-216-2. 

[5] C.E. Platunov: Thermophysical Measurements and Instrumentation (title in Russian is 
Teoe epe  pop). . Maocpoee‚ San Petersburg, 1986. 

[6] J. Boer. J. Butter. B. Grosskopf and P. Jeschke: “Hot wire technique for determining high thermal 
conductivities” Refractories Journal, vol. 55 (1980), pp. 22-28. 

[7] A. Bouguerra. O. Ait-Mokhtar. M. Amiri and B. Diop: “Measurement of thermal conductivity, thermal 
diffusivity and heat capacity of highly porous building materials using transient plane source 
technique” Int. Comm Heat Mass Transfer, vol. 28 (2001), pp. 1065-1078. 

[8] C. Gobbé. S. Iserna and B. Ladevie: “Hot strip method: application to thermal characterisation of 
orthotropic media” International Journal of Thermal Sciences, vol. 43 (2004), pp. 951–958. 

[9] L. Kubicar and V. Bohac: “A Step-wise method for measuring thermophysical parameters of 
materials” Meas. Sci Technol., vol. 11 (2000), pp. 252-258. 

[10] J. Sylos Cintra and W. Santos: “Numerical analysis of sample dimensions in hot wire thermal conductivity 
measurements” Journal of the European Ceramic Society, vol. 20 (2000), pp. 1871-1875. 

[11] M. Al-Homoud: “Performance characteristics and practical applications of common building thermal 
insulation materials” Building and Environment, vol. 40 (2005), pp. 353–366. 

[12] I.H. Tavman and S. Tavman: “Measurement of thermal conductivity of dairy products” Journal of 
Food Engineering, vol. 41 (1999), pp. 109-114. 

[13] G. Ventkaesan and Guang-Pu Jin: “Measurement of thermophysical properties of polyurethane foam 
insulation during transient method” Int. J. Therm. Sci., vol. 40 (2001), pp. 133-144. 

[14] W. Aquino and J. Brigham: “Self-learning finite elements for inverse estimation of thermal 
constitutive models” International Journal of Heat and Mass Transfer, vol. 49 (2006), pp. 2466–2478. 

[15] I.C. Grigoryev, Physical quantities. Handbook (title in Russian is  , 
). o, Moscow, 1991. 

[16] S. Chudzik and W. Minkina: “Quick quality inspection of thermal parameters of heat-insulating 
materials” International Conference Material Testing and Research. Nuremberg (Germany), pp. 341-
347, 8-10 May 2001. 

[17] A. Hasiloglu. M. Yilmaz. O. Comakli and I. Ekmekci: “Adaptive neuro-fuzzy modeling of transient heat 
transfers in circular duct air flow” International Journal of Thermal Sciences, vol. 43, pp. 1075–1090, 2004. 

[18] I. Turias. J. Gutie´rrez and P. Galindo: “Modelling the effective thermal conductivity of an 
unidirectional composite by the use of artificial neural networks” Composites Science and 
Technology, vol. 65 (2005), pp. 609–619. 

[19] S. Chudzik: ”Determination of thermal diffusivity of heat-insulating material using neural networks” 
(title in Polish is Okreslenie wspolczynnika dyfuzyjnosci cieplnej materialow termoizolacyjnych z 
wykorzystaniem sieci neuronowych) Proc. of 3th Scientific-Technical Conference on Methods and 
Computer Systems in Automatics and Electrical Engineering. Poraj (Poland), pp. 126-128, 17-19 
September 1999. 

[20] S. Chudzik S., S. Grys and R. Babka: ”Possibility of use of artificial neural networks for solving the 
coefficient inverse problem” (title in Polish is Mozliwosc wykorzystania sztucznych sieci 
neuronowych do rozwiazania wspolczynnikowego zagadnienia odwrotnego). Proc. of 4th Scientific-
Technical Conference on Methods and Computer Systems in Automatics and Electrical Engineering. 
Poraj (Poland), pp. 46-48, 17-18 September 2001. 

[21] Guide to the Expression of Uncertainty in Measurement. Supplement 1. Numerical Methods for the 
Propagation of Distributions. Joint Committee for Guides in Metrology. 2004. 

[22] Guide to the Expression of Uncertainty in Measurement. BIPM. IEC. IFCC. ISO. IUPAC. IUPAP and 
OIML. 1995. 

306 SENSOR+TEST Conference 2009 - SENSOR 2009 Proceedings II




