
Mechanical model of a pre-stressed piezoelectric buckling 
actuator

Florian Toth1, Manuel Dorfmeister2, Manfred Kaltenbacher1

1 Institute of Mechanics and Mechatronics, TU Wien, Vienna, Austria
2 Institute of Sensor and Actuator Systems, TU Wien, Vienna, Austria

florian.toth@tuiwen.ac.at

Abstract:
A mechanical model for a piezoelectric plate actuator is developed. The effects of the piezo-actuation 
as well as the equivalent effect of thermal pre-stress are included in the constitutive model. Based on 
classical lamination theory we derive a formulation for the plate behavior including piezoelectric effects 
and thermal strains. Using von Karman plate theory we obtain equilibrium equations able to describe 
the non-linear behavior of the plate. The equilibrium equations are numerically solved for axisymmetric 
plates using the shooting method to obtain equilibrium paths.
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Introduction
Loss of stability through buckling or snap-
through is usually undesired in engineering 
structures. However, buckling phenomena can 
also be exploited e.g. to determine material 
parameters through indirect experiments [1], or 
in actuator applications [2]. While the 
determination of critical loads (i.e. the load at 
which a bifurcation occurs) is often sufficient for 
the prevention against the loss of stability in 
standard applications, the exploitation of 
buckling phenomena in actuator applications 
requires precise knowledge about the post-
critical behavior of the investigated system.

The investigated microelectromechanical 
system (MEMS) consists of a circular, 
multilayer plate with the intended use as an 
actuator for digital sound reconstruction (DSR). 
The multilayer structure is pre-stressed due to 
the production process leading to buckling of 
the plate structure. The piezo layer is actuated 
to switch from one to the other stable 
equilibrium. The advantage of such an actuator 
exploiting the post-buckling behavior is a 
significantly larger stroke level.

Mechanical Model
One of the key points of the mechanical 
modelling of the actuator system is the correct 
description of the electromechanical coupling 
including pre-stress in a large-displacement 
framework. However, the model must be simple 
enough to enable a mathematical analysis of 
the non-linear behavior of the structure to be 

suitable for the design of actuators. Therefore, 
some simplifications are employed: As we are 
dealing with thin plate-like structures, we 
assume a plane stress state with the axis of the 
vanishing normal stress oriented 
perpendicularly to the plane of the plate. 
Adopting the Kirchhoff hypothesis we can 
describe the strain state in the plate by

(1)

where z denotes the transverse coordinate 
measured from the plate’s reference surface. 
The deformed shape of the reference surface is 
described by the in-plane strain tensor  and 
the curvature tensor . In order to account for 
large displacements we use the strain 
measures introduced by von Karman

(2)

(3)

which allow to model the coupling of membrane 
strains, and the transverse displacements, i.e. 
the third component of the displacement vector 
of the reference surface .

All materials are modelled as transversally 
isotropic with the axis of the vanishing normal 
stress perpendicular to the isotropic plane.  
Employing Voigt’s linearized theory of 
piezoelectricity and additionally considering 
thermal strains we can write the linearized 
constitutive relation as
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(4)

and

(5)

where the entries in the effective plane stress 
stiffness tensor (written in Voigt notation) are 
computed as

, , ,
from the usual Cij, which denote the non-zero 
entries of the transversally isotopic stiffness 
tensor with 1-2 as the isotropic plane. The 
entries of the effective plane stress 
piezoelectric coupling tensor compute as

,

and the effective electric permittivity becomes 

.

A key point in the mechanical description of thin 
piezoelectric structures is the assumption that 
Gauss’ law reduces to a one-dimensional form 
if we can neglect the in-plane components. 
Thus, we have

(6)

meaning that the dielectric displacement is 
constant in each layer. Integrating eq.(5) over 
the layer thickness we obtain

which we can insert back into eq. (5) to obtain 
an expression for the electric field strength in 
transverse direction

. (7)

We can now use this relation, eq. (7), and insert 
it in eq. (4) to obtain the final constitutive 
relation

(8)

which describes the behavior of each 
piezoelectric, thermally stressed layer. We note 
that the tensor 

(9)

describes the additional bending stiffness 
contribution due to piezoelectricity. Another 
important observation is that pre-stress, 
introduced here via a thermal strain acts exactly 
like an actuated piezo layer. Thus, both effects 
can be include via a single term

(10)

As it is clear that both effects, piezo actuation 
and pre-stress enter the equation in the same 
way by the effective in-plane stress we will not 
consider them separately.

We now obtain the stresses over the thickness 
and sum over the individual layer to obtain the 
section forces and moments

and respectively. 
The constitutive law on the plate level can then 
be written as

(11)

The components of above equation are

where we have introduced the layer thickness 
and the middle position of a layer

and .

Finally, we write the equilibrium equations for 
the plate as

(12)

(13)

where p3 denotes a pressure force acting in 
transverse direction. We have neglected in-
plane forces in eq. (12) and are only interested 
in the static equilibrium. Note that all relations 
have been written in coordinate-free form, i.e. 
they are applicable both to e.g. Cartesian and 
Cylindrical coordinates.

Numerical Solution
As we are considering circular plates we apply 
the divergence and gradient operators in eqs. 
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(12) and (13) in cylindrical coordinates. If we 
restrict ourselves to circular symmetric 
solutions, we obtain two coupled, non-linear 
ordinary differential equations (ODEs). The 
ODEs are fourth-order in u3, the transverse 
direction, and third order in ur, the radial 
direction. The equation for the circumferential 
direction is trivially satisfied. By simply 
introducing additional variables, we can write 
the equations as a non-linear system of 7 first 
order ODEs. 

We can solve the boundary value problem 
numerically by the shooting method. Although, 
this is in principle a simple procedure one 
needs to consider some details: Firstly the 
integration must be started at a small distance 
to r=0 due to the singularity of the equations. 
Secondly, the chosen start value should satisfy 
the boundary conditions [7]. Finally, one needs 
to iteratively find the correct start values such 
that the boundary conditions at the outer edge 
are satisfied. This is done using the Nelder-
Mead algorithm [5]. For the forward integration 
we employ a 4th order Runge-Kutta scheme [6].

Results
We compute equilibrium paths for clamed 
plates under different in-plane loadings and 
transverse pressures. For the sake of simplicity, 
and to test the implementation we consider 
isotropic plates with a single layer. Introducing a 
transverse pressure acts as an imperfection 
similar to the one introduced by an 
unsymmetrical layup. However, we do not have 
any coupling between membrane loading and 
curvature change, i.e. the B-matrix is zero.

Results were obtained for a plate with thickness 
to radius ratio of 0.01. The applied in-plane 
loads were normalized by the product of the in-
plane stiffness the square of the thickness to 
radius ratio and the thickness. The transverse 
pressure was normalized by the product of in-
plane stiffness and the fifth power of the 
thickness to radius ratio. 

The equilibrium obtained curves are depicted in 
Fig. 1. Following the dashed line for the lowest 
pressure we are very close to the trivial 

equilibrium path, until the solution bifurcates at 
the first buckling load of 1.22 [4]. Choosing a 
suitable starting value one can also follow over-
critical equilibrium paths which will again 
bifurcate at the second buckling load. 
Considering the solutions for higher transverse 
pressure we observe multiple possible 
equilibrium positions for overcritical loads. 

Fig. 1. Load displacement diagram for transverse 
center displacement versus in-plane load for different 
values of the transverse pressure. The theoretical 
buckling loads are indicated as black dots.

It should be noted that the present method, 
while very useful to obtain equilibrium paths, 
does not allow determining the stability of the 
equilibrium. Additionally, the assumption of 
axial symmetry does not allow the description of 
snap-buckling, i.e. the transfer from one over-
critical equilibrium path to another by an 
unsymmetrical buckling mode [3].

Summary
A formulation for piezoelectric plate actuators 
has been presented. The mathematically 
equivalent effects of thermal pre-strain and 
piezo actuation are included into the formulation 
by a modified constitutive law. They both can 
be described by an equivalent in-plane stress. 
The equilibrium equations based on the von 
Karman plate theory were solved numerically 
for circular plates with symmetric deformation 
figure by the shooting method
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