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Abstract 
The present contribution addresses the problem of characterising frequency dependent mechanical 
material properties of linear viscoelastic materials. Therefore, the material behaviour for a wide 
frequency range is calculated from several DMA measurements using the time-temperature-
superposition. These so-called master curves describe the material behaviour for a broad frequency 
range, which is necessary for obtaining the parameters of a rheological model. Here, the fractional Zener 
model is applied and parameterised to represent the viscoelastic properties of a polyamide 6 (PA6) 
specimen. 
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Introduction 
In order to apply certain materials in a 
mechanical system, it is important to 
characterise its physical properties. Since the 
material behaviour depends among others on 
the frequency, for fully describing the material it 
is necessary to determine the properties at 
different frequencies. A simple and widespread 

at low frequencies is the Dynamic Mechanical 
Analysis (DMA). Since the applied frequencies 
are typically below , the time-temperature-
superposition can be deployed to extend the 
measuring range. From several DMA 
measurements at different temperatures, it is 
possible to conclude the higher frequency 
behaviour. Mostly, it is reasonable to not assign 
a value to each frequency, but to parameterise a 
frequency dependent model. Thus, only a small 
amount of parameters is able to represent all 
relevant aspects. These parameters have to be 
determined for each material. This can be 
achieved by finding those parameters that are 
best suited for representing measured data. In 
this contribution, a procedure is presented using 
DMA measurements for parameterising a 
fractional Zener model for representing linear 
viscoelastic material behaviour. 

Time-dependent Viscoelastic Material 
Behaviour 
The mechanical behaviour of a material 
specimen can be described by determining the 
relation between the applied mechanical tension 

 and the occurring strain . An ideal elastic 
material is characterised by a proportional 
relationship (Hoo : 

 

A viscose material however follows a time-
dependent relation, e.i. the stress is proportional 
to the derivative of the stress with respect to 
time: 

 

Viscoelastic materials show a combination of 
these two behaviours. They are usually 
described by various models containing the 
elastic moduli  describing elastic components 
and viscosities  describing the viscous parts. [1] 

The effects of linear viscoelasticity can be 
interpreted as retardation (creep) and relaxation 
mechanisms. The retardation time constant  
describes the response time of the material, 
when a step in stress is applied, whereas the 
relaxation time constant  describes the 
response time of the decaying stress when an 
abrupt strain is applied. These time constants 
can be measured by quasi-static tensile creep 
tests. [2] 

Well-known, simple models such as the Kelvin-
Voigt- or the Maxwell-modell do often not suffice 
to describe the material entirely. They can either 
represent retardation or relaxation mechanisms, 
but not both. Thus more complex models such 
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as the fractional Zener model described in the 
following are required. 

Fractional Zener Model 
The Zener model [3] (also known as standard 
linear solid model) can be interpreted as a 
combination of two springs (denoting the elastic 
moduli  and ) and one dashpot (denoting 
the material coefficient of viscosity ) arranged 
as shown in figure 1 

 
Fig. 1. Mechanical spare model for the Zener model 

 

The mathematical description for such a system 
is given by the differential equation 

 
with 

,   and   

This model is able to describe retardation and 
relaxation at the same time, but only in an 
exponential manner. The relaxation time  is  
itself, the retardation time  can be calculated to 
be . 

A more general model is the fractional Zener 
model using fractional derivatives of order  and 
 ( ), that are defined as [4]: 

 

Different modifications of this fractional Zener 
model can be applied, however the five-
parameter model which is used here is given by 
the differential equation [5] 

 

The retardation and relaxation processes are no 
longer restricted to exponential behaviour, but 
can be described as being in between a 
hyperbolic and exponential one (Mittag-Leffler 
function). 

This model is able to represent a wide variety 
class of linear viscoelastic materials. 

 

Harmonic Analysis of Viscoelastic Behaviour 
When transforming the time-dependent 
viscoelastic differential equations into the 
frequency domain, the behaviour can be 
characterised by a complex modulus 

, where  is the storage modulus and  is 
the loss modulus. Assuming a harmonic strain 
excitation  the harmonic 
stress response is phase-shifted: 

 

Thus, the stress contains one component in-
phase with the strain excitation and one 
component shifted by . The complex, 
frequency-dependent modulus then is given by 

 

The modulus usually follows a characteristic 
function of the logarithmic scaled frequency 
depicted in   figure 2. 

For measuring this frequency-dependent 
viscoelastic behaviour, a Dynamic Mechanical 
Analysis (DMA) can be applied. 

 
Fig. 2. Characteristic curve of the frequency 
dependant mechanical moduli 

Dynamic Mechanical Analysis (DMA) 
The Dynamic Mechanical Analysis [6] is a 
measurement technique for characterising the 
frequency-dependent material behaviour for 
frequencies lower than the specimens 
resonance frequency (typically below ). 

A harmonic stress is applied with increasing 
frequency whereupon the resulting strain is 
measured. Different modes of deformation are 
possible, like shear, torsional or tensile stress. 
Another possibility is the dual cantilever bending. 
Here, both ends of a thin specimen are clamped 
and a drive shaft applies the harmonic stress on 

-up is 
positioned in a chamber with controlled 
temperature, which is quite important in the 
following. 
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Time Temperature Superposition 
Since the DMA measurements usually are 
conducted using low frequencies, but the 
determination of the parameters of a viscoelastic 
model require the material behaviour over a 
broad frequency range, a single DMA 
measurement is not well suited for this purpose. 
Nevertheless, the low-frequency data obtained 
by the DMA can be extrapolated to frequencies 
orders of magnitude larger. This can be achieved 
using the time-temperature-superposition. 

The principle of time-temperature superposition 
describes, that a higher (lower) frequency has 
the same effect on the mechanical behaviour as 
a lower (higher) temperature. This seems 
plausible when picturing a material that gets 
stiffer, when high frequency stress is applied 
similar to when it is cooled down. This means 
that a change of temperature causes a scaling of 
the frequency / time axis which is equal to a 
frequency / time shift of the logarithmic 
frequency / time. [7] 

Thus, the low-frequency DMA measurements 
can be performed at different temperatures and 
these can be shifted along the frequency axis to 
describe the higher-frequency range. From 
several single measurements one can create a 
so called master curve describing the material 
behaviour for several decades of frequency / 
time as depicted in figure 3. 

 
Fig. 3. Exemplary master curve generation  

Mathematically, the William-Landel-Ferry 
equations allow the calculation of the 
temperature dependent frequency scaling 
coefficients  [8]. Starting from a 
temperature  the frequency dependent 
measurements of another temperature  have to 
be shifted along the logarithmic frequency for 

. A linear relation is given by 

 

with 

 

and the material constants  and . 

Since this simple relationship between 
frequency and temperature is not always given, 
the time-temperature-superposition does only 
apply to so called thermorheologically simple 
materials. Whether a material displays this 
simple relationship can easily be seen in a Cole-
Cole-plot, i.e. displaying the elastic modulus in 
the complex plane for different temperatures. If 
this results in a continuous semicircular curve, 
the material can be regarded as 
thermorheologically simple. [9] 

Figure 4 depicts the Cole-Cole-plot for the 
measured modulus of PA6. The typical curve for 
themorheologically simple material is 
recognisable, although certain deviations can be 
observed for lower temperatures.  

 
Fig. 4. Cole-Cole-plot for PA6 measurements 

Measurement Set-up and Master Curve 
Generation 
The DMA measurements have been carried out 
in the dual cantilever mode using a PA6 
specimen of size  in 
a temperature range from  to  and a 
frequency range from  to . The 
shifting along the frequency axis is conducted 
such that a continuous master curve results (see 
figure 5).  

 
Fig. 5. Generated master curves for PA6  

The deviations for low temperature 
measurements that were already observed in the 
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Cole-Cole-plot can mainly be seen in the loss 
modulus. 

Since some calibration problems concerning the 
phase angle  occurred during the 
measurement, some corrections had to be made 
in order to obtain physically valid measurement 
data. 

Determining the Fractional Zener Model 
Parameters from DMA Measurements 
When a master curve from DMA-measurements 
is found, one can determine the parameters for 
a fractional Zener model from this curve. 
Therefore a description of the time-dependent 
differential equations is Fourier transformed and 
the complex modulus can be calculated [5]: 

 

with 

 

For a physical model, all parameters have to be 
non-negative and for the orders of the fractional 
derivatives  and , the relation  is given. 
For polymers  does typically 
apply. 

In the following, the model parameters  
and  are fitted to the master curve via an 
optimisation process. Since most optimisation 
algorithms need initial values, these are 
approximated directly from the master curves 
using the methods from table 1. 
Tab. 1: Initial value estimation for fractional Zener 
model parameters 

Parameter Determination method 

 Storage modulus at  

 Storage modulus at  

 Reciprocal of the frequency at 
maximal storage modulus 

 slope of the logarithm of the loss 
modulus before its maximum 

  for polymers 

 

The optimisation bounds for the parameters are 
set such that a physically meaningful result is 
obtained. For the optimisation, a Levenberg-
Marquardt-algorithm is applied. The results are 
listed in table 2. 

Tab. 2: Initial and optimised values for the fractional 
Zener model parameters 

Parameter Initial value Optimised value 

   

   

   

   

   

 

The comparison between the measured and 
generated master curves and the optimised 
model is depicted in figure 5. One sees 
immediately that they are in good agreement 
except for the high-frequency part of the loss 
modulus, which already showed some 
deviations in the master curve generation. 

 
Fig. 5. Generated master curves for PA6  

Thus, the mechanical behaviour of the PA6 
specimen is given by the fractional Zener model 

range. 

Conclusions 
In summary, it was possible to use the time-
temperature-superposition in order to obtain the 
elastic properties of PA6 for a broad range of 
frequencies from several low-frequency 
measurements. Furthermore, the measured 
data could be brought into agreement with a five-
parameter fractional Zener model by calculating 
fitting parameters. Thus, the viscoelastic 
behaviour can be described not only for the 
measured frequency range, but  using the 
analytic model  for arbitrary frequencies as long 
as the fractional Zener model is applicable. 

Another restriction for the applicability of the 
presented measurement technique is the 
thermorheological simplicity. The DMA 
measurements carried out with a polyether ether 
ketone (PEEK) specimen could not be shifted to 
form a continuous master curve and thus, no 
material parameters could be identified. 
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A comparison with alternative measurement 
techniques for determining mechanical 
properties of polymers that intrinsically obtain 
higher frequency results can be found in [10]. 
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