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Abstract:
We present an experimental setup along with a simulation environment for piezoelectric cantilevered
Energy Harvesting structures under the influence of a stationary rotation. We explain the physical effects 
that lead to changes in the natural frequencies of the harvester. Consideration of the effects by the Finite 
Element Method is outlined. For the computation of damped eigenfrequencies, we exploit a model order 
reduction scheme based on a modal truncation technique, extended to piezoelectric structures. 
Parameters that influence the tuning behavior are identified and simulation based parameter studies are 
presented.
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Introduction
Mechanical vibration occurs as an unwanted 
byproduct in many technical processes. Rotating 
machinery is a prominent example for such a
source of vibration. The physical causes for 
vibration in rotating assemblies are manifold. 
Imbalance or misalignment of shafts, Hooke’s 
joints or reciprocating masses along with engine 
firing in combustion engines are common factors 
for torsional vibrations as well as bending and 
axial vibrations in drivetrains [1],[2]. Piezoelectric 
vibration Energy Harvesters (VEH) aim at 
converting this otherwise unused mechanical 
energy into electrical energy [3] [4]. As the 
conversion takes place at any location where 
vibration is present, electrical energy is readily 
available for sensors or other low-power 
electronics. Substitution of batteries or power 
transmission onto moving parts is a promising 
application field for vibration Energy Harvesters. 
When designing a linear oscillator-type 
mechanical structure incorporating piezoelectric 
material for energy conversion, the structure has 
to be optimized in accordance with the vibration 
characteristics of the source. Care must be taken 
to match a structure’s resonance frequency to 
the harmonic component where mechanical 
vibration is most eminent. While vibration occurs 
at fixed frequencies in some applications, the 
aforementioned sources of vibration in rotating 
machines vary with revolution speed that, in 
many applications, is not constant [5].

Here, we consider a cantilevered piezoelectric 
energy harvester, which is mounted directly onto 
a rotating drive shaft. Due to the acceleration 
field, generated by the rotation, various
mechanical forces other than the vibration itself, 
act on the structure, thereby causing a shift in 
resonance frequencies [6]-[9]. This tuning 
property must be accounted for in the design of 
a resonant electromechanical structure. In this 
contribution we present a simulation 
environment that is well suited to this task and 
that is capable of producing efficient numerical 
models for further investigations including 
electronic circuits, coupled to the piezoelectric 
structure [10]. We also present some validation 
results obtained by an experimental procedure 
for measuring the first bending mode 
eigenfrequency of a VEH under rotation.

Physical Modeling
Under the assumption of a rigid shaft, we model 
the harvesting structure in a non-inertial 
coordinate frame (Fig. 1). Furthermore, we 
consider the rotation to be stationary. Therefore, 
we can split the angular rate into a constant 
portion and a time-varying part , i.e.,

. (1)

(2)

Frot is the rate of rotation in Hz. In what follows, 
we assume the time-varying part to be small in 
comparison to the constant part.
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Figure 1 displays a cantilever with tip mass and 
a piezoelectric composite patch in a rotating 
environment. Rotation occurs around the z-axis 
of the non-inertial frame, causing a centrifugal 
acceleration field

. (3)

Fig. 1. FE model of a VEH with piezoelectric patch 
with centrifugal acceleration field. The free length of 
the harvester is 88 mm, width 40 mm, thickness 0.5 
mm. The patch is a PI DuraAct P-876.A12.

Here, is the vector of the rotation axis and 
is the position vector. In Fig. 1, the acceleration 
in longitudinal direction of the harvester, ax,
induces mechanical stresses in the material, 
thereby changing the stiffness of the structure. If 
the harvester performs a bending-mode 
vibration, in this example it will oscillate in y-
direction. With ay being directly proportional to 
the y-coordinate of a given point, this effect acts 
as a negative stiffness on the structure, while 
displacements in z-direction are not affected. 
The orientation of a rotating structure, therefore,
strongly influences its tuning behavior. If the 
vibration has a component perpendicular to the 
rotation axis, a Coriolis force will act on a
moving mass m that is proportional to its velocity
v

(4)

Because of its velocity proportionality, the 
Coriolis effect can be modeled as direction 
dependent damping, potentially also affecting 
the tuning behavior.

In Fig. 2, a rotating cantilever sheet is depicted 
along with parameters of orientation that affect 
the tuning behavior. alters the 
direction of the bending mode vibration with 
respect to the rotation axis. Its value has an 
influence on the aforementioned negative 
stiffness as well as on the Coriolis force. The root 
offset xoff from the rotation axis influences the 
magnitude of centrifugal forces acting on the 
structure in x-direction.

 
Fig. 2. Illustration of the parameters and xoff as 
well as the Coriolis force acting due to vibration and 
rotation.

Numerical Modeling
For numerical modeling of the piezoelectric 
structures under rotation, we used the Finite 
Element Method (FEM). All FE calculations were 
performed by the Finite Element code cfs++, 
which was developed at the Chair of Sensor 
Technology [11]. The change in stiffness due to 
the centrifugal acceleration is captured by the 
so-called geometrical stiffness that is generally 
dependent on the nodal displacements. 
Because of the stiffness being dependent on the 
displacements, the system has to be solved 
iteratively [12], i.e.,

(5)

(6)

Kg is the FE stiffness matrix, which depends on 
the nodal displacements u and the centrifugal 
acceleration forces fa acting on the structure. 
The solution to (5) are the incremental 
displacements s at the kth iteration step. The 
nodal displacements are subsequently updated 
(6) and the procedure is repeated until a 
convergence criterion is met. As we consider the 
rotation to be stationary, (5) is static. In assuming
the dynamic excitation of the harvesting 
structure to be small in comparison to the 
stationary centrifugal acceleration, a linearized 
dynamic computation around the solution of (5)
is possible.

By direct coupling of the mechanical equations 
to the electrostatic field by the piezoelectric 
effect, we arrive at the piezoelectric dynamic 
system of ordinary differential equations:

. (7)

Here, M, C, and Km represent the mechanical 
mass, the damping and the stiffness matrices,
respectively. The nodal force vector f is the 
mechanical excitation. The nodal displacements 
are denoted by u. A superscript dot indicates 
derivation with respect to time. Ke is the 
electrostatic matrix and V are the electric nodal 
potentials. The electric right-hand-side consists
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of the nodal charges Q. The electric and the 
mechanical parts of the system are coupled by 
the piezoelectric coupling matrices Kem and Kme.

The direction-dependent negative stiffness due 
to the centrifugal acceleration is accounted for by 
adding an additional stiffness matrix Kr to the 
mechanical stiffness matrix [13] resulting from 
(5)

. (8)

The velocity-dependent Coriolis effect is 
captured by the gyroscopic matrix G, which is 
added to the Rayleigh model damping matrix D

. (9)

In order to efficiently solve the FE system (7), we 
exploit a modified modal truncation method for 
piezoelectric structures described in [10]. We 
solve the generalized eigenvalue problem for the 
coupled system

(10)

for a number of N eigenvalues. This computation 
also yields the first N eigenvectors

(11)

including the mechanical mode shapes as well 
as the corresponding electric potentials in the 
piezoelectric material. With the help of the 
mechanical and electrical parts of (11), all sub-
matrices in (7) are truncated to a size of NxN,
exemplified here for the mechanical mass matrix 
M:

. (12)

The matrix of the first N mechanical mode 
m is extracted from (11). A superscript 

‘T’ denotes the transpose of a matrix. By 
considering only a limited number of eigenvalues 
within the frequency range of interest, the order 
of the mathematical system is reduced 
significantly. In considering also the potential 
distributions for the electric parts of the system 
(7), the local properties of electric equations are 
preserved. The reduced system of equations can 
then be used to perform coupled simulations 
involving the harvesting structure as well as 
electronic circuits, e.g., in Simulink [10].

Here, we use the reduced system to solve a 
quadratic eigenvalue problem. The quadratic 
eigenvalue problem includes damping and,
therefore, the Coriolis effect.

An automated simulation procedure was 
implemented that yields the eigenvalues, mode 
shapes and the reduced dynamic set of 
equations for a given number of angular rates 

rot as well as for different combinations of 
geometrical and orientation parameters of the 
Energy Harvesting structure.

Experimental Setup
For an experimental assessment, we developed
the setup, shown in Fig. 5a. It consists of a 
rotating shaft, driven by a brushless DC-motor 
with rated speed of 3000 1/min. A piezoelectric 
VEH structure is mounted to the rotating 
structure, shown in more detail in Fig. 3.
Electrical signals are transferred to and from the 
rotating shaft by means of a mercury-filled ring 
wheel (not shown). With the help of the variable 
mounting, the VEH is positioned with respect to 
the rotating axis, therefore varying the centrifugal 
and Coriolis forces, acting on the structure (see 
also Figs. 1 and 2). The first bending mode 
eigenfrequency is measured electrically under a 
constant rotational speed. Subsequently, the 
speed is increased and the next measurement is 
performed. In Fig. 4, the first bending mode 
eigenfrequency of the structure in Fig. 1 is 
plotted over rotational frequency for two different 
tip masses. In this experiment, the angle was 
kept at 90°. The angle remained at 0°.

Fig. 3. Detail sketches of the mounting with VEH 
structure. (a): Side-view with angle (b): Top-view 
with angle .

Fig. 4. First bending mode eigenfrequency of the
cantilever VEH from Fig. 1 with piezoelectric patch 
and two different tip masses m2>m1.
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Fig.5. Experimental rotating setup. (a): Sketch of the mechanical part without housing around the mounting. (b): 
Photograph of the mounting with VEH structure and counterweight structure.

Parameter Studies
The eigenfrequencies of an energy harvesting 
structure under rotation as well as their tuning 
behavior are affected by various parameters. 
From Fig. 4 can be observed that an increase of 
the tip masses not only affect the natural 
frequency at Frot = 0Hz, but additionally 
influences the steepness of the tuning curve.

The curves in Fig. 6a are obtained from a 
simulation of a similar structure with two different 
tip masses. Additionally, the root-offset xoff was 
varied. The sheet in Fig. 6a has a thickness of 
0.5mm. In Fig. 6b, the thickness is increased to 
1mm, while the other parameters remain 
unchanged.

In order to assess the influence of parameters on 
the steepness of the curves, we extracted the 
slopes at the highest rotational frequency of 
each curve by a finite difference. The result in 
Fig. 7 is the steepness plotted over the 
height of the tip mass that is proportional to its 
weight. Additionally, the root-offset as well as the 
thickness were varied. It can be concluded from 
Fig. 7 that the steepness of the tuning curves is 
not monotonic with the weight of the tip mass. It 
is, however, remarkably affected by it. Figure 8 
displays a similar result over the height of the tip 
mass and the thickness of the cantilever metal 
sheet at a fixed root-offset of xoff=15cm. Similar 
conclusions can be drawn from investigations of 
other parameter variations, such as the free
length of the harvesting structure or the position 
of the piezoelectric layer.

Fig. 6. First bending mode eigenfrequency of a
cantilever VEH with piezoelectric patch and two 
different tip masses m2>m1 at two different root-offsets 
xoff2=5cm, xoff1=0 (a): Thickness 0.5mm; (b): thickness 
1mm. : m2,
xoff1.
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Fig. 7. Steepness of frequency tuning curves over 
height of the tip mass for different parameters. Solid 
lines: Thickness 1mm; dashed lines: thickness 
0.5mm; xoff1=0; xoff2=5cm; xoff3=10cm;

xoff4=15cm

Fig. 8. Steepness of frequency tuning curves over 
height of the tip mass and thickness of the cantilever 
sheet with xoff=15cm.

It has to be noted here that only one single 
structure, i.e., a straight cantilever with tip mass 
in clamped-free conditions with a piezoelectric 
patch, was investigated. The position of the 
patch as well as the shape of the harvester 
remained unchanged. It has been shown that the 
shape of a rotating structure also alters its tuning 
behavior [9].

Conclusion
We presented a FE based simulation 
environment for the numerical computation of 
piezoelectric energy harvesters undergoing a 
rotation. The simulation tool is part of a system 
simulation approach for energy harvesters that 
has been described previously. Furthermore, we 
introduced an experimental setup for the 
measurement of eigenfrequencies of energy 
harvesters under rotation along with some 

results, which coincide with the findings from 
simulations. Finally, we identified parameters 
that affect the tuning behavior in terms of 
steepness of the tuning curve. The influence of 
the angle has yet to be validated by 
experimental measurements. Furthermore, the 
influence of the piezoelectric layer dimensions 
and position have to be taken into account in 
future studies.
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