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Abstract: 
This paper addresses the computation of dispersion curves, mode shapes and propagation of elastic 
guided waves. It summarizes the approaches based on the Scaled Boundary Finite Element Method. 
Descriptions for plates, rods, pipelines and waveguides with an arbitrary cross section are included. The 
important steps for the approximation of the displacement in bounded and unbounded domains are 
stated. The grid generation process is explained. It is highlighted that the Scaled Boundary Finite 
Element Method is very efficient, if large portions of the domain are either straight or with a constant 
curvature. The computation of dispersion curves for layered structures is presented.  
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Introduction 
Ultrasonic flaw detection is one of the most 
common methods used in Non-Destructive 
Testing. Pipes, plates, rods and other 
geometries can be tested with elastic guided 
waves. A guided wave can propagate if at least 
one direction of the structure is small in 
comparison to the wavelength. This wave type 
can travel over long distances. This allows a 
scan of the complete structure at once and leads 
to a fast inspection.  To evaluate the results, a 
good understanding of the physics of wave 
propagation is necessary. The required 
information can be gained, e.g., with numerical 
simulations. However, most conventional finite 
element software is not well suited for this task. 
The high frequencies, and thus the ratio of 
wavelength and geometrical scale, demand a 
fine grid and small time steps for an accurate 
approximation. These factors lead to a time-
consuming computation process. The long 
computation time can be significantly reduced 
using more sophisticated approaches. In this 
article, we present the Scaled Boundary Finite 
Element Method (SBFEM) as a suitable 
alternative to the conventional Finite Element 
Method (FEM) or the Finite Difference Method. 
The inspection of a structure using guided waves 
starts with analyzing the dispersion properties. 
Dispersion describes the frequency dependence 
of the sound velocity. Assuming a dispersive 
wave propagation, two different types of 
velocities must be considered. On the one hand, 
there is the phase velocity which is directly linked 
with the wavelength, on the other hand, there is 

the group velocity describing the energy 
transportation speed. If one direction of the 
structure is long enough to be considered as 
infinite, these properties are usually summarized 
as dispersion curves. The curves build the 
foundation for many investigations in Non-
Destructive Testing using guided waves. 
The research on algorithms for computing 
dispersion curves has started with analytical 
solutions for isotropic materials in plates and 
rods which are infinite in one direction. Beside 
other approaches, semi-analytical methods can 
be used for analyzing the dispersion relations, 
for example the Semi-Analytical Finite Element 
(SAFE) and the Scaled Boundary Finite Element 
Method (SBFEM). These methods approximate 
the cross section of the sample by a finite 
element grid and solve the infinite direction 
analytically. In SAFE recent developments 
incorporated damping [1], however, only 
unbounded domains can be modeled. SAFE and 
SBFEM can also be used for simulating the wave 
propagation. 

Another possibility to compute wave propagation 
and dispersion curves are higher order elements 
in a FEM or in a IsoGeometric Analysis [2]. 
Higher order elements leading to more efficient 
computation, but a major disadvantage in 
comparison to SAFE and SBFEM is the 
necessity of a complete grid for a long bounded 
structure because unbounded structures cannot 
be modeled. 
We will present SBFEM, because it combines 
many advantages: Unbounded domains can be 
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modeled, and their dispersion curves can be 
computed. Additionally, bounded domains can 
be analyzed. The main part of the domain is 
modeled by the semi-analytical solution. This 
lowers the computational costs significantly.  
Furthermore, SBFEM allows the modeling of 
crack tips elegantly by describing the crack tip 
analytically [3], which is useful for Non-
Destructive Testing. SBFEM can be coupled with 
finite element grids without additional workload. 
Higher order elements can be used to lower the 
computation cost.  

The scope of this article is to point out for which 
problems SBFEM is advantageous and to give 
an introduction into the foundation and the 
possibilities of this method for the computation of 
ultrasonic waves. This does not include a careful 
guide how to compute the matrices. The reader 
is referred to the literature [4-8]. In this 
contribution, we mainly concentrate on the 
computation of dispersion curves with SBFEM 
but will finally present some examples for 
analyzing the wave propagation. 

Overview of the Solution Process with 
SBFEM 
The Scaled Boundary Finite Element Method 
can model elastic wave propagation in the 
frequency domain in a two- and three-
dimensional space. For simplicity, we consider 
one fixed frequency: 

 (1) 
where  is the frequency,  the density,  the 
stress and u the unknown displacement. This 
equation is valid inside the domain. The solution 
for a numerical approximation has always two 
main steps. The first step is to build a suitable 
description of the domain. The second step is to 
compute an approximation inside this domain. 

In FEM for example, the first step is to build a 
grid as a description of the domain. The second 
step is to compute the approximation for the 
displacement at each node of the grid. In the 
following we will describe these two main steps 
for SBFEM. 

Step 1: Description of the Domain in SBFEM 
In this section, the description of the domain is 
given, at first of an unbounded and then of a 
bounded domain. 

In SBFEM the description has two parts: i. a grid 
and ii. points which are scaled and/or rotated to 
the grid.  

Dispersion curves are computed for unbounded 
domains. For these domains, either a one-
dimensional grid  a line with nodes  or a single 
two-dimensional grid is used. The computational 

cost depends mostly on the number of nodes 
used in the grid.

Common examples for these domains are 
infinite plates, with one line in y-direction and 
points which are scaled in the x- and the z-
direction (Figure 1 - left) [4]. Another example is 
an infinite hollow cylinder (Figure 1 - right) [5], 
with one line and points which are scaled in the 
z-direction and rotated in -direction. The third 
example is a infinite domain with an arbitrary 
cross section (Figure 2) [6], with a grid in the xy-
plane and points scaled in the z-direction. In all 
figures 1-7 the scaling is marked by the dotted 
lines. 

 
Fig. 1. Semi-infinite plate and hollow cylinder 

  

 
Fig. 2. Semi-infinite domain with arbitrary cross 
section  

To model wave propagation in arbitrary domains, 
the domain sometimes must be decomposed in 
several sub-domains. There are three kinds of 
sub-domains with their own requirements. 

The frist sub-domain consists out of a straight 
prismatic shape with two equal grids at each side 
(Figure 3). This is related to the infinite domain 
in Figure 2. 

   
Fig. 3. Bounded straight and curved sub-domain 

The second sub-domain is described by two 
equal grids which are linked by an arc of 
constant curvature [7]. This is shown in Figure 3 
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for the two-dimensional case. This sub-domain 
is related to the infinite hollow cylinder.

Figure 4 shows a curved sub-domain which is 
coupled with a straight sub-domain in two-
dimensional space. The length of a sub-domain 
between the two cross sections does not affect 
the computational cost of the approximation. 
This is the reason, why SBFEM is especially 
suited for domains with large straight parts or 
large parts with a constant curvature. These 
domains are very common in the investigation 
with guided waves. In comparison, the more 
complicated finite element grid for the same 
situation is depicted in Figure 5. 

 
Fig. 4.  SBFEM-grid
 

 
Fig. 5. FEM-grid 

 
Fig. 6. Bounded star sub-domain 

The last type of sub-domains must satisfy the so-
called star property. This property postulates that 
there is one point - called scaling center - which 
is connected via straight lines to all boundary 
points [8]. In Figure 6 we can see an SBFEM-
grid for an arbitrary shape in two dimensions. 
The right picture is a special case because the 
grid is not closed  this can be used to model 
cracks [3]. 

Another possibility to divide the domain is that 
the SBFE-grid can be coupled with an FE-grid. 

This is possible if both grids coincide. Figure 7 
summarizes all coupling possibilities. 

 
Fig. 7. Summary coupling possibilities 

Step 2:  Approximation of the displacement 
In SBFEM the approximation of the 
displacement has also two parts: one finite 
element part depending on the grid and one 
analytical part. For simplicity, we consider only 
one scaling direction as shown in Figure 2. 

If the z-direction is infinite, the solution of 
Equation (1) takes the form 

  (2) 

There are only unique pairs  of the 
frequency  and the wavenumber  possible. 
The displacement for one pair is called a mode. 
Modes build the foundation of each test with 
guided waves, because every wave field that 
travels a long distance can be decomposed into 
modes. The aim is to excite only a few modes 
and compute the interaction of these modes with 
flaws. If a mode is reflected by a flaw the group 
velocity is needed to compute the position of this 
flaw. 

For a fixed frequency, the SBFEM solution 
process leads to an eigenvalue problem 

 (3) 

where  is the eigenvector,  is the eigenvalue, 
and  is a matrix depending on the grid. 

As in FEM, the displacement is given for the 
nodes of the grid. Every other point of the 
domain can be computed by the FEM-
interpolation or by Equation (2). The eigenvector     

 contains values of the 
displacement in the upper half of the vector. In 
the lower half are the force values to excite this 
mode for each node. The eigenvalue is directly 
linked with the wavenumber by   

  (4) 
The phase velocity is given by 

. (5) 

Only if  is purely imaginary the eigenvector 
defines a propagating mode. The details for the 

 AMA Conferences 2017 – SENSOR 2017 and IRS2 2017 378

DOI 10.5162/sensor2017/C5.4



derivation of the matrix for infinite plates can 
be found in [2], for infinite rods in [5,7], and for 
domains with an arbitrary cross section in [6]. 

Let   be a special eigenvector with 
a purely imaginary eigenvalue, then the group 
velocity can be computed as [10] 

  (6) 

Here  is the conjugate transpose operator 
and  is a matrix which is very similar to the 
mass matrix in classic FEM. 

Example 1 
This example demonstrates the possibility to 
compute dispersion curves even for a more 
involved case with different layers. 

In this example, we consider an IM7/8552 
carbon-epoxy composite with a layup 

. This composite is used for example 
in the aerospace industry. 

 

 Fig. 7 Layup  

The layup is summarized in Figure 7. It is 
assumed that every ply is transversally isotropic 
[9]. Each ply is 0,8 mm thick and the material 
properties are summarized in Table 1.  The 
different layers are modeled by rotation of the 
transversally isotropic elasticity matrix. This 
example was computed with a plain-strain 
assumption to reduce the three-dimensional 
problem to two dimensions. The time of 
computation with an implementation in MATLAB 
and a modern computer for one frequency takes 
less than a second. Exact performance tests can 
be found in [3]. 

The dispersion curves are summarized in the 
Figures 8-10. The wavenumber in Figure 8 is 
computed by Equation (4) and plotted if the 
associated eigenvalue is purely imaginary. For 
each purely real wavenumber, the phase velocity 
is computed with Equation (5) and the group 
velocity is computed with Equation (6). 

Tab. 1: Material properties

 IM7/8552  
 1570 .00 kg/  

 171.40  

 9.08  

 9.08  

 5.29  

 5.29  

 2.80  

 0.32  

 0.32  

 0.50  

 

 
Fig. 8. Wavenumber vs Frequency in IM7/8552 

 
Fig. 9. Frequency vs Phase Velocity in IM7/8552 
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Fig. 10. Frequency vs Group Velocity in IM7/8552 

 

Example 2 

For the second example, we consider a 
waveguide with a cross-section pictured in 
Figure 11. We look only at one mode at a 
frequency of 3.14 MHz and a phase velocity of 
3.25 km/s. The material is isotropic steal. The 
material parameters are summarized in Table 2.  

The displacement of this mode is computed with 
Equation (2) and pictured in Figures 12-14. 

 

Fig. 11. Cross section grid for example 2

 
Fig. 12. Displacement in x-direction 

 
Fig. 13. Displacement in y-direction 

 
Fig. 14. Displacement in z-direction 

Tab. 2: Material properties 

 steal  

 7.800  

 82.64  

 0.28  

 
The simulation of wave propagation 

For simplicity, we consider only excitations at the 
grid. For straight and curved sub-domains the 
eigenvectors of Z are used to derive a stiffness-
matrix K( ) and the displacement u is derived by 
solving the linear matrix equation 

 (7) 

where F is associated with the external boundary 
forces on the nodes. 

Detailed information about the derivation of the 
stiffness-matrix can be found for plates in [2] and 
for rods in [5,7]. For the third kind of sub-domain, 
the derivation is much more involved, it can be 
found in [8]. 
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Example 3 
This Example shows that SBFEM can compute 
interesting cases with only a few sub-domains. 
In this example, an ultrasonic wave travels in a 
bended pipe with a decomposition like in 
Figure 4. The displacement is computed with 
Equation (7). 

 
Fig. 15. Displacement in a bended pipe 

 

Conclusion 
The current state of research for the Scaled 
Boundary Finite Element Method for the 
simulation of guided wave propagation was 
summarized. 

The Scaled Boundary Finite Element Method is 
a fast and suitable method to compute 
dispersion curves. Even layered structures can 
be computed.  

A common structure which is tested with guided 
waves has large straight parts. These structures 
can be decomposed in only few sub-domains. It 
was shown that this decomposition leads to very 
efficient computation with SBFEM.  
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