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Abstract: 

Gas-sensitive, silicon carbide based field-effect transistors (SiC-FETs) with platinum gate are operated 
dynamically using temperature cycled operation (TCO) to quantify three hazardous volatile organic 
compounds (VOCs), i.e. benzene, naphthalene and formaldehyde, in the low ppb range. A suitable 
temperature cycle is developed based on static response measurements, and a linear model is built 
employing Partial Least Squares Regression (PLSR) with features extracted from the temperature 
cycle. Additionally, a strategy for cycle optimization using a t-test on the model coefficients is 
presented. 
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Introduction 

Humans spend almost 90 % of their time 
indoors [1] which makes indoor air quality (IAQ) 
a crucial matter for human health. After a 
prolonged stay in buildings, many people 
experience symptoms like headache and 
discomfort, generally summarized as Sick 
Building Syndrome (SBS) [2]. These symptoms 
have been attributed to Volatile Organic 
Compounds (VOCs) present in the indoor air. 
Moreover, some VOCs are carcinogenic and, 
thus, have a severe negative impact on human 
health even in very small concentrations (ppb 
and sub-ppb). The three most relevant VOCs 
are investigated in this work: benzene, 
naphthalene and formaldehyde. 

The World Health Organization (WHO) [3] and 
the INDEX project [4] have published potential 
hazards and guidelines for safe exposure limits 
of these three VOCs, amongst others. Benzene 
(C6H6) is genotoxic and carcinogenic at any 
concentration. Its occurrence in fuel raises 
outdoor levels, but more critical are indoor 
concentrations up to 2 ppb caused by solvents 
and cigarette smoke. Naphthalene (C8H10) is a 
suspected human carcinogen with a long-term 
exposure limit of 1.9 ppb. Apart from being an 
additive in gasoline which affects outdoor 
levels, it is contained in cigarette smoke and 
insect repellants. Measured values in German 
homes vary between 0.1 and 2.6 ppb [5]. 

Formaldehyde (CH2O) is used in disinfectants, 
resins and polymers. Values between 4 and 
200 ppb have been measured in residential 
homes [4]. Chronic exposure can possibly 
cause cancer. The limit for long-term exposure 
is 80 ppb. 

Due to these health risks, monitoring the levels 
of hazardous VOCs in buildings would be 
desirable. Demand-controlled ventilation based 
on on-line measurements would decrease 
energy consumption while maintaining a 
healthy environment. Currently, there is no 
system on the market that can perform on-line 
identification and quantification of different 
VOCs at such low concentrations. While gas 
chromatography with subsequent mass 
spectrometry (GC/MS) can obtain the 
necessary resolution, it is expensive, requires a 
sampling procedure and it can usually not be 
used on-site. On the other hand, on-line 
capable methods like flame ionization detectors 
(FID) can only measure the amount of total 
VOCs (TVOC) [6]. This value does, however, 
not quantify the risk of exposure for specific 
carcinogenic compounds and might not even be 
a proper indicator for unspecific symptoms like 
SBS [2]. 

It has been shown that metal-oxide 
semiconductor sensors and gas-sensitive 
silicon carbide based field-effect transistors 
(SiC-FET) are sensitive enough to detect sub-
ppb levels of VOCs [7],[8],[9]. Improved 
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Fig. 1. Gas profile, 30 min gas pulses with 30 min background (humid air) in between. 

selectivity is obtained by temperature cycled 
operation (TCO) [7],[9]. 

This work uses data from a platinum-gated SiC-
FET with temperature cycled operation to 
quantify different concentrations of benzene, 
naphthalene and formaldehyde, three main 
pollutants in indoor air. Partial Least Squares 
Regression (PLSR) [10] is employed to build a 
linear model for quantification from features of 
the periodic sensor signal. Based on these 
models, a strategy for cycle optimization using 
a t-test on the model's coefficients is presented. 

Experimental details 

A custom-made gas mixing apparatus (GMA) 
[11] is used to provide very low and well-
defined concentrations of benzene (1, 3, 5 ppb), 
naphthalene (5, 20, 35 ppb) and formaldehyde 
(50, 100, 150 ppb) in background, i.e. humid 
synthetic air (25 % r.h., Fig. 1). VOC spiked air 
is applied for 30 min with a pause of 30 min (in 
clean air) after each pulse. Each concentration 
is applied twice to test for possible sensor drift. 
At least 20 temperature cycles per gas 
exposure are taken into account for evaluation, 
i.e. at least 40 cycles for each concentration in 
total. The “zero concentration” group comprises 
approx. 220 cycles in background from the long 
pauses around 8 and 16 h (Fig. 1). 

A SiC field-effect transistor (SiC-FET) with 
porous platinum gate [12] is mounted in a 
sealed measurement chamber and exposed to 
the gas flow while its temperature is changed 
periodically according to the cycle shown in 
Fig. 2. The sensor signal is the drain current at 
4 V drain-source voltage and zero gate bias. 
The data acquisition rate is 10 Hz. 
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Fig. 2. Temperature cycle. 

The shape of the temperature cycle is derived 
from measurements at static temperatures 
(Fig. 3) in order to provide sensitive, selective 
and stable signals. The sensor shows good 
sensitivity to formaldehyde and naphthalene at 
various temperatures.  

175 °C cannot be considered since some 
devices will give a signal out of measurement 
range (1 mA) due to production tolerances. 
Then, the region from 200 to 250 °C is 
promising for the discrimination of naphthalene 
and formaldehyde since the sensitivities to both 
gases, and especially the ratio, varies strongly. 
Within this region also the highest sensitivity for 
benzene is obtained at 225 °C and is thus also 
included in the cycle as a transient temperature. 
The plateau at 380 °C is used to clean the 
sensor surface from adsorbed species to 
enhance the signal stability.  

Data treatment 

Each cycle represents one concentration 
measurement. However, one cycle is described 
by 600 data points, which can lead to problems, 
especially overfitting, in multivariate analysis. 
Thus, as a first step of dimensionality reduction, 
each temperature cycle is divided into ten equal 
parts (“feature ranges”) of 6 s length each. In 
each interval “features”, i.e. signal mean value 
(“mv”) and slope (“bfl”, best fit line), are 
computed from the sensor signal. These 20 
shape-describing features are standardized, so 
that each feature has a mean of zero and a 
standard deviation of one, and then fed to the 
Partial Least Squares Regression (PLSR) 
algorithm [10]. This algorithm tries to establish a 
linear relationship between a linear combination 
of the features and the concentration of a target 
gas by projecting the data in a suitable way 
before applying linear regression. Thus, one 
coefficient for each feature is obtained, so that 
a linear combination gives the estimated 
concentration. The data is projected into a new, 
usually lower-dimensional space which itself is 
built from linear combinations of the features, 
so that the best compromise between explained 
variance and covariance to the concentration is  

 AMA Conferences 2015 – SENSOR 2015 and IRS2 2015 585

DOI 10.5162/sensor2015/D5.1



temperature (°C)
175 200 225 250 275 300s

e
n

s
o

r 
re

s
p

o
n

s
e

 (
µ

A
)

-1

-0.5

0

benz. (40 ppb)
naph. (40 ppb)
form. (150 ppb)

 

Fig. 3. Static gas response at different temperatures. 

obtained. The number of dimensions of this 
new space is called “components” of the model. 

Taking too few components into account will 
result in a poor model because information is 
missing. However, a model with too many 
components will have poor prediction ability 
although it fits the training data very well. This is 
due to overfitting, an effect where insignificant 
information from the signal, often noise, is used 
by the model as if it was a real feature. It is 
hence important to choose the optimal number 
of components, which is achieved by 
minimizing the Root Mean Squared Error of 
Prediction (RMSEP). Here, the RMSEP is 
calculated using 10-fold cross-validation [13], 
where a tenth of the data from each 
concentration group is randomly selected and 
not used for building the model, but is later 
projected as “unknown” data for which the Root 
Mean Squared Error (RMSE) is determined. 
This is done ten times so that all data is once 
used for validation, and the mean RMSEP is 
calculated. 

With the data in this work, overfitting did not 
occur. Instead, the RMSEP becomes almost 
constant above a certain number of compo-
nents, i.e. additional components do not add 
further information. Hence, very small 
fluctuations in RMSEP, depending on the 
random cross-validation sets, can lead to rather 
strong variations of the optimal number of 
components. Therefore we determine the mean 
of the absolute lowest RMSEP, add 10 % of its 
standard error, and subsequently chose the 
model with fewest components which produces 
a RMSEP just below that value. The meaning of 
the absolute RMSEP of a model is easier to 
interpret when compared to other models; 
hence, its change in percent is also given, 
based on the full model (cf. Tab. 1). 

Pearson’s correlation coefficient is used to 
measure the covariance between model output 
and known response. A value of 100 % means 
perfect linear correlation. 

Another important parameter of the model is its 
resolution, expressed as uncertainty. The 
uncertainty is here defined as 2×2 max, which 

corresponds to the end-to-end length of the 
largest 2  error bar. For normally distributed 
outputs this means that 95 % of all model 
outputs for a given concentration are within this 
boundary. Hence, another concentration must 
be 4 max above or below for being recognized 
almost certainly as a different concentration. 

The t-test [14] is used to check the features’ 
coefficients for statistical significance. If the 
coefficient has a high probability (here 95 %) of 
being zero, its contribution to the model is 
negligible. Thus, the feature can be omitted 
which can be helpful when trying to optimize 
and shorten the cycle. 

Results and discussion 

A PLSR model was built for each test gas. The 
respective cycles in this test gas were extracted 
from the whole measurement shown in Fig. 1. 

In a first step, all models were built using all 20 
of the available features: ten mean values and 
ten best fit lines. Parameters of the resulting 
models are summarized in Tab. 1, and a plot of 
the model is shown in Fig. 4a for benzene. The 
best models are obtained with 11 (benzene) to 
14 (formaldehyde) components, and their 
correlation coefficients are between 98.3 % 
(naphthalene, Fig. 5) and 99.0 % 
(formaldehyde, Fig. 6). For benzene and 
formaldehyde, linear models are evidently an 
appropriate approach for quantification using 
SiC-FETs. Naphthalene exhibits a slightly non-
linear behavior and will thus additionally be 
examined using non-linear methods in a future 
paper. 

The resolution of the three different models 
varies strongly. For example, the uncertainty is 
1.3 ppb for benzene (Fig. 4a), equal to the error 
bar of the 3 ppb concentration. The uncertainty 
of the models for naphthalene, 7.0 ppb, and 
formaldehyde, 40.0 ppb, were determined 
accordingly. Setting uncertainty and model 
span into relation, it is obvious that the 
uncertainty increases when the model spans a 
wider concentration range. The quotient of the 
uncertainty divided by highest concentration is 
around 26 % for benzene and formaldehyde, 
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Tab. 1. Model parameters. 

gas parameter full model t-test model inv. t-test model 

benz. components 11 10 - 
 features 20 14 - 
 Pearson’s R 98.4 % 98.4 % - 
 uncertainty (rel.) 1.3 ppb 1.3 ppb (0 %) - 
 RMSEP (rel.) 0.32 ppb 0.32 ppb (0 %)  

naph. components 13 8 7 
 features 20 10 10 
 Pearson’s R 98.3 % 98.2 % 97.4 % 
 uncertainty (rel.) 7.0 ppb 6.8 ppb (−3 %) 11.2 ppb (+60 %) 
 RMSEP (rel.) 2.51 ppb 2.53 ppb (+1 %) 2.98 ppb (+19 %) 

form. components 14 8 - 
 features 20 12 - 
 Pearson’s R 99.0 % 98.8 % - 
 uncertainty (rel.) 40.0 ppb 50.3 ppb (+26 %) - 
 RMSEP (rel.) 8.29 ppb 8.86 ppb (+7 %)  
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Fig. 4. PLSR model for benzene with (a) all 
features and (b) 14 significant features selected by t-
test. 
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Fig. 5. PLSR model for naphthalene with (a) ten 
significant features selected by t-test and (b) with the 
other, non-significant features. 
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Fig. 6. PLSR model for formaldehyde with 14 
features selected by t-test. 
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Fig. 7. Number of features that are considered 
significant by the t-test, for the first and second part 
of the cycle shown in Fig. 2. 

and 20 % for naphthalene. Therefore we 
assume that the resolution of each model can 
be improved employing a hierarchical 
approach, similar to those used for 
classification with Linear Discriminant Analysis 
in [15] and [16]: first, the concentration is 
determined roughly with a wide-range model, 
and in a second step with a narrow-range 
model around this concentration. This approach 
is similar to local variants of the PLSR 
algorithm, like Locally Weighted PLSR (LW-
PLSR) [17], which could therefore be another 
possibility to improve resolution (especially for 
naphthalene, as this also takes non-linearity 
into account). 

PLSR assigns one coefficient to each feature. 
The value of this coefficient often represents 
the importance of the respective feature. This is 
interesting especially for optimizing the 
temperature cycle, e.g. shorten the cycle by 
omitting parts which do not contribute to the 
result Furthermore, we can verify our approach 
for the derivation of the cycle. While the first 
half of the temperature cycle was specifically 
designed to detect the target gases, the second 
half is mainly for cleaning purposes. Thus, the 

features from the first half should be more 
significant than those from the second half. This 
is verified by the t-test shown in Fig. 7. 
Especially the significance of the slope 
diminishes strongly in the second half because 
potential gas signals are overlaid by the strong 
signal change caused by the large temperature 
drop from 380 to 200 °C. It can thus be 
concluded that feature selection using t-test is 
able to identify significant parts of the cycle. 
Distinct trends regarding superiority of one 
feature or the other cannot be seen here. 

A reduced feature set is determined by applying 
the t-test of the coefficients of the respective full 
model with all 20 features. Here, six (benzene, 
formaldehyde) to ten features (naphthalene) 
can be excluded. Another model is then built 
using this reduced feature set (Fig. 4b, Fig. 5a, 
and Fig. 6). The optimal number of components 
for these models is always lower, between 8 
and 10, than for the full model because non-
significant information must not be filtered by 
the algorithm. The correlation coefficient 
remains nearly unaffected and does not 
decrease more than 0.2 % compared to the full 
model. However, while the uncertainty remains 
constant for benzene, it decreases about 3 % 
for naphthalene and increases 26 % for 
formaldehyde. The numbers for their respective 
prediction ability, expressed in RMSEP 
compared to the full model, behave mostly 
similar. No difference in prediction ability is 
seen for benzene, while the RMSEP increases 
about 1 % and 7 % for naphthalene and 
formaldehyde, respectively. 

In the reduced model for naphthalene, 10 out of 
20 features are excluded. It is therefore easy to 
validate the t-test's choice by building a model 
based only on the excluded features. Indeed, 
the resulting "inverse" model performs 
comparatively worse than the model built using 
the t-test (Tab. 1, compare Fig. 5a and Fig. 5b). 
Compared to the full model its correlation 
coefficient decreases by 0.8 % which does, 
however, not affect the linearity much. More 
importantly, its uncertainty increases more than 
60 % compared to the full model, while it even 
decreased slightly for the t-test model. 
Furthermore, the RMSEP of the inverse model 
increases by about 19 % compared to the full 
model, whereas the increase is only 1 % for the 
model built with the t-test. This leads to the 
conclusion that feature selection can strongly 
affect the prediction ability and verifies again 
that the t-test identifies important features. The 
presented method is thus suitable for efficient 
feature selection and, on this basis, 
temperature cycle optimization. 
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Conclusion and outlook 

We have shown that SiC-FETs with 
temperature cycled operation can be used to 
quantify benzene, naphthalene and 
formaldehyde at health relevant concentrations 
in the ppb-range. The extracted features are 
“sufficiently linear” to use the linear Partial 
Least Squares Regression (PLSR) algorithm to 
build a quantification model. The model 
resolution seems to depend on the model 
range: for benzene, concentration differences of 
1.3 ppb can be discriminated between 0 and 
5 ppb, while for formaldehyde the uncertainty is 
40 ppb in the range 0 to 150 ppb. Because of 
this dependence, approaches like hierarchical 
modeling are expected to improve the result. 

Another optimization strategy is using non-
linear algorithms, e.g. LW-PLSR. However, 
unlike the simple approach used in this work, 
this approach does not return a global set of 
coefficients. With these coefficients, a t-test can 
be used to identify futile features and parts of 
the temperature cycle and thus help in cycle 
optimization. 
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