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Abstract 

An elegant solution for the power supply of sensor electronics is the application of power-by-light 
technology. With this technology several challenges related to conventional copper wiring are 
inherently overcome; benefits are galvanic isolation, the suppression of electromagnetic interference, 
and the possibility to combine power and bidirectional data transmission in a single fiber link.  

In order to power sensor electronics efficiently, a supply voltage in the range 3 to 12 V is typically 
required. This paper deals with the photovoltaic laser power converter used to convert the transmitted 
optical power back into electricity. The advanced cell concepts of multi-junction and multi-segment 
cells are discussed which both aim at an increased output voltage on the device level, thereby 
eliminating the need for additional DC/DC conversion. Modeling and experimental results of GaAs 
based cells are presented, namely of single-junction 2- to 12-segment cells as well as of a dual-
junction single-segment structure. A discussion of the pros and cons of the different concepts is given, 
focusing on the consequences of misalignment and temperature changes. 

Key words: Laser power converter, misalignment, multi-junction, multi-segment, photovoltaic cell, 
power by light, temperature, voltage. 

Introduction 

One important aspect in sensor design is the 
power supply. Besides conventional copper 
wiring, an elegant solution is to power the 
sensor electronics optically. This can be 
realized by optical power transmission of laser 
light from the base station to a photovoltaic 
receiver located at the sensor which converts 
the monochromatic laser light back into 
electricity. 

With such power-by-light technology several 
challenges related to conventional copper 
wiring are inherently overcome, such as 
electromagnetic interference, the risk of short 
circuits and sparks, or susceptibility to 
corrosion. Furthermore, it provides galvanic 
isolation, lightning protection, weight reduction, 
the possibility of wireless powering, and the 
compatibility with rotating systems. An 
additional benefit is the possibility to combine 
power and bidirectional data transmission into a 
single fiber link. Fields of application are 
manifold: Examples are structural health 
monitoring of wind turbines [1, 2], fuel gauges in 
aircraft wings [3], monitoring of high voltage 
power lines [4, 5], optical powering of 

automotive sensors [6], biosensors in smart 
implants [7-9], monitoring of passive optical 
networks [10], and fully optical sensor networks 
[11, 12]. 

In order to power sensor electronics efficiently, 
a supply voltage in the range 3 to 12 V is 
typically required. This paper deals with 
photovoltaic laser power converters used in 
power-by-light technology. Two advanced cell 
concepts, namely multi-junction and multi-
segment cells, are discussed which aim at an 
increased output voltage on the device level, 
thereby eliminating the need for additional 
DC/DC conversion. Experimental and modeling 
results of GaAs based cells are presented, 
namely of single-junction 2- to 12-segment cells 
as well as of a dual-junction single-segment 
cell. The paper concludes with a discussion of 
pros and cons of these concepts, focusing on 
the consequences of misalignment and 
temperature changes. 

Photovoltaic Laser Power Converters 

With photovoltaic cells as power converters for 
monochromatic light, very high opto-electrical 
conversion efficiencies can be achieved 
because the semiconductor material’s bandgap 
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can be well matched to the energy of the 
photons. With III-V compound semiconductors, 
a broad range of bandgap energies from below 
0.3 to 2.5 eV is covered, corresponding to laser 
wavelengths in the range 0.5 to 4 µm. With an 
adjusted design, thermalization and 
transmission losses, as the main loss 
mechanisms in solar cells, can be minimized 
due to the matching of bandgap and photon 
energy. A plot of the monochromatic efficiency 
of an idealized laser power converter is shown 
in Fig. 1 as a function of laser wavelength for 
different irradiances. The curves are calculated 
in the detailed balance limit [13] under the 
assumptions of monochromatic irradiance, a 
semiconductor bandgap Eg that matches the 
laser wavelength λ (Eg=hc/λ), full absorption of 
the incident photons, each absorbed photon 
contributes one charge carrier to the photo 
current (IQE=EQE=1), and radiative 
recombination only [14]. As can be seen in the 
plot, the ideal conversion efficiency in the 
detailed balance limit evaluates to values above 
80% for an irradiance of 100 W/cm². It is 
remarked that for practical devices somewhat 
lower values are expected. However, a 
comparison with the detailed balance limit for 
an ideal single-junction solar cell under one sun 
illumination, which is 33% [15], reveals the 
possibilities of monochromatic light conversion. 

A semiconductor material that is frequently 
used for laser power converters is GaAs. With a 
bandgap of 1.42 eV it is well matched for the 
800-850 nm wavelength range. Due to its vast 
use in micro- and optoelectronics, it is a well-
known material and available in excellent 
quality. At Fraunhofer ISE, a conversion 
efficiency of 57.4% was achieved with a GaAs 
based photovoltaic laser power converter under 
805 nm laser light at an irradiance of 
124.0 W/cm². For comparison, the highest 
reported opto-electrical conversion efficiency of 
a solar cell is 46% under concentrated light [16, 
17].  

A drawback of photovoltaic cells, however, is 
the output voltage of a single cell. For a GaAs 
based photovoltaic cell it is about 1 V. In 
contrast, to power sensor electronics efficiently, 
supply voltages in the range 3 to 12 V are 
required. To overcome this limitation, 
photovoltaic laser power converter devices with 
an increased voltage output were developed. 
An increased output voltage can be achieved 
by connecting several subcells in series. That 
way the output voltage of the string 
corresponds to a multiplication of the single cell 
voltage with the number of subcells. A 
monolithic series connection can be  
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Fig. 1. Detailed balance calculation of the 
monochromatic efficiency of ideal laser power 
converters in the radiative limit. Assumptions: 
Monochromatic irradiance, Eg=hc/λ, full absorption of 
the incident photons, each absorbed photon 
contributes one charge carrier to the photo current 
(IQE=EQE=1), dark current determined by radiative 
recombination only. After Ref. [14]. 

implemented by vertical stacking of subcells 
(multi-junction cells) or by lateral segmentation 
(multi-segment cells, also known as monolithic 
interconnected modules, MIMs) [18]. In the 
following section these two concepts are 
introduced. 

Cell Concepts for Increased Voltage Output 

To realize vertically interconnected stacks, the 
subcells are grown monolithically on top of each 
other on a conductive substrate [18]. Fig. 2 
shows a cross section of a dual-junction 
structure as an example. In between each pair 
of subcells a tunnel junction is implemented to 
establish a low-loss series connection. The 
contacts to the device are established by 
metallization of front and back side of the 
device. To improve lateral conduction to the 
front grid fingers, a transparent lateral 
conduction layer can be implemented above the 
top cell [18, 19]. Due to the growth of several 
subcells of different thicknesses and the 
necessity of tunnel diodes in between, the 
epitaxial growth of multi-junction cells is rather 
complex. The manufacturing, however, is 
similar to single-junction cell processing.  

To realize multi-segment cells or monolithic 
interconnected modules (MIMs) [20], the 
photovoltaic cell structure is grown on semi-
insulating substrate. Fig. 3 illustrates the 
interconnection scheme. The electrical 
separation of the individual subcells is created 
by etching isolation trenches through the  
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Fig. 7. Plot of the absorption coefficient of GaAs as 
a function of wavelength. Data from Ref. [24]. 

the incident laser light, the cutoff wavelength, 
λc=hc/Eg, must be kept above the laser 
wavelength. Otherwise, the semiconductor 
becomes transparent for the laser light and the 
performance breaks down immediately. 
Moreover, the temperature affects the 
absorption coefficient also for wavelengths 
below the cutoff wavelength, namely it 
increases with increasing temperature. Fig. 7 
shows the temperature dependence of the 
absorption coefficient of GaAs from 200 K to 
400 K based on data published by Philipps et 
al. [24]. In principle, lower absorption leads to a 
reduced photo current. However, the effect is 
small: Under the assumption of an internal 
quantum efficiency of 1, the data shown in 
Fig. 7 translates into a temperature coefficient 
of the current of only 0.01 %/K. The 
temperature coefficient of the open circuit 
voltage is determined by the material; for GaAs 
it is known to be in the range -0.26 %/K to  
-0.11 %/K, where lower absolute values are 
reached at higher irradiances [25, 26].  

For laterally segmented cells, temperature 
affects all segments equally. Thus, the current 
matching of single-junction multi-segment cells 
is independent of temperature. 

For multi-junction cells, however, the situation is 
different. The subcell thicknesses are designed 
in a way that all subcells absorb an equal 
fraction of the incident monochromatic light. For 
that reason, the layer design is optimized for a 
given wavelength and temperature. Deviations 
from the design case lead to current mismatch 
between the subcells and the overall current 
becomes limited by the subcell that absorbs the 
least fraction of the incident light. 

Based on the data shown in Fig. 7 and 
assuming an internal quantum efficiency of 1, 
the related temperature coefficient of the overall 
current is calculated for multi-junction cells with 
up to 12 subcells designed for 300 K and  
 

 

Fig. 8. Plot of the temperature coefficient of the 
current related to temperature induced current 
mismatch in multi-junction laser power converters. 
The values are calculated for a laser wavelength of 
810 nm and a bottom cell thickness of 3.6 µm.  

810 nm laser light but operated at respectively 
lower and higher temperatures. The results are 
shown in Fig. 8, assuming a bottom cell 
thickness of 3.6 µm. The negative values are to 
be understood as a drop in the overall 
mismatched current compared to the ideal 
current matched case at 300 K. It is striking that 
for the dual-junction case increasing and 
decreasing temperature lead to a similar 
mismatch of about -0.11 %/K. For three and 
more junctions, however, a temperature 
increase (circles) affects the current matching 
much worse than a temperature drop (squares). 
This behavior can be understood from the 
following considerations: Temperatures above 
the design temperature result in an increased 
absorption in the top cell and, consequently, 
less light is transmitted into the underlying 
layers. Consequently, for higher temperatures 
always the undermost subcell limits the device 
current. For lower temperatures the opposite is 
true. Increasing the number of junctions at low 
temperatures means that the current is limited 
by the upmost cell (of decreasing thickness). 
On the other hand, for high temperatures the 
incident light that reaches the limiting bottom 
cell is filtered by an increasing number of above 
lying subcells with a disproportional total 
thickness increase. 

Finally, it is remarked that the current mismatch 
in multi-junction laser power converters can be 
counterbalanced by an effect known as 
luminescence coupling [27]. If carriers which 
are generated in the overproducing subcells 
recombine radiatively, they emit a photon which 
can be reabsorbed by adjacent subcells. As a 
result, the incident photons are redistributed 
within the stack in a self-organized fashion. Yet, 
this effect requires radiative recombination to 
be the dominant process, which requires an 
excellent material quality.  
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Table 1: Comparison of pros and cons of single-
junction single-segment (standard) cells with multi-
junction and multi-segment laser power converters. 

 
Standard 

Multi-
junction 

Multi-
segment 

Output voltage ~1 V ~N * 1 V ~N * 1 V 

Max. acceptable 
misalignment r * 16% r * 16% r * 5-8% 

Temperature 
dependence   

(incr. with N)  

Epitaxy Simple Complex Moderate

Manufacturing 
(photolithography 

steps) 
Simple 

(3) 
Simple 

(3) 
Complex

(≥ 6) 

 

Summary and Conclusion  

The concepts of multi-junction and multi-
segment laser power converters were 
presented. GaAs based single-junction multi-
segment cells with 2, 4, 6, and 12 segments as 
well as dual-junction single-segment cells were 
demonstrated. By investigating the open circuit 
voltage it was shown that both cell concepts are 
well capable of multiplying the output voltage on 
the device level by the number of subcells.  

Misalignment and temperature changes were 
discussed in light of their influence on the 
performance and current matching of theses 
cell concepts. Multi-segment cells are prone to 
misalignment, where the sensitivity increases 
with the number of segments. However, 
temperature changes do not harm the current 
matching. For multi-junction cells the situation is 
the opposite: The influence of misalignment is 
similar to that of single-junction single-segment 
cells, whereas temperature changes can cause 
significant current mismatch between the 
subcells. To assist optimal system design, the 
pros and cons of the different cell concepts, as 
discussed in this paper, are summarized in 
Table 1.  
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