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We use a thin piezoelectric layer attached to a mechanical plate to harvest mechanical energy as avail-

able at the vibrating skin of machinery. By modifying the material distribution of the piezoelectric layer the

resonance frequency of the energy harvester is adjusted to maximize the objective function. In this paper

the electric energy and the electric potential is maximized. This topology optimization problem is performed

by a variant of the SIMP (Solid Isotropic Material with Penalization) method which determines for every finite

element cell if it is better to have piezoelectric material at that location or not. Numerical results are shown

for single frequency pressure excitations from a broad frequency range. The objective functions electric

potential, electric energy, energy conversion factor and mean transduction are discussed.

1 Introduction

Energy harvesters are devices producing electric energy out of ambient energy. The applications and concepts are

of wide range. Typical applications are self powered sensors with wireless communication. This might allow for more

flexibility in the location of the devices, would be cost efficient as cables or batteries are not required and environmental

friendly as less batteries have to be produced.

Devices built of piezoelectric material harvesting vibrational ambient energy represent an area of active research.

Due to the typical small power output, an increase in performance or reduction of cost has a significant impact. A

comprehensive overview is given in the review paper (Anton and Sodano, 2007), where several optimization efforts are

mentioned but none applying topology optimization.

In Sections 2 and 3 we introduce our model for the finite element formulation and introduce and apply the SIMP (Solid

Isotropic Material with Penalization) method.

To our knowledge there are only two publications about the topology optimization of energy harvesters (Nakasone

et al, 2008) and (Bin Zheng and Gea, 2008). They are discussed in Section 4 along our own objective functions

(potential and electric energy).

Numerical results and conclusions finish this work. Due to the complexity of the subject and limited space we refer

to our publications (Wein et al, 2008a) and (Wein et al, 2008b) giving a more comprehensive introduction to a similar

coupled model (but there as actuator).

2 The Composite Model

In contrast to beam based energy harvesters, we consider thin plates or films subject to deformation due to mechanical

pressure. This pressure might result from acoustic pressure, fluid or mechanical excitation. As depicted in Figure 1(a)

a layer of piezoelectric material Ωp is attached to the plate Ωm transforming the strain energy caused by the dynamic

deformation, Figure 1(b), into electric energy.

V
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(No) Piezoelectric Material Ωp

Pressure

(a) Schema (b) Simulation

Figure 1: The plate Ωm with support on the edge with the attached layer of piezoelectric material Ωp. The (sinusoidal)

pressure deformes the system resulting in a voltage between the electrodes on both sides of Ωp. In Figure

1(b) the heights of Ωm 100 µm and 50 µm for Ωp are scaled by factor of 100.
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The quadratic aluminum plate Ωm has a length of 50 mm and a thickness of 100 µm. The piezoelectric ceramic

layer Ωp (PZT-5A) is 50 µm thick (this rather thin materials have been used in a similar project, see the note below).

There are electrodes on the free side of Ωp and between Ωp and Ωm. Their mechanical properties (stiffness) are

neglected. We also assume an ideal connection between the two materials. Replacing the mechanical layer with a

composite glue/plate layer would not change the introduced piezoelectric-mechanical coupled system. The presented

optimization method is independent on the actual model properties (dimensions, thickness, material) as it provides for

each specific model a specific optimal solution.

The material law describing the linear piezoelectric effect for Ωp is given by

[σσσ ] = [cccE0 ][SSS]− [eee0]TEEE,

DDD= [eee0][SSS]+ [εεεS0]EEE.
(1)

The mechanical plate Ωm supporting the piezoelectric layer is described by Hooke’s law as

[σσσ ] = [cccm][SSS]. (2)

The quantities are: Electric field intensity EEE, electric displacement field DDD, Cauchy stress tensor [σσσ ], linear strain tensor

[SSS] and the material tensors of elastic moduli [cccE0 ] and [cccm], dielectric permittivities [εεεS0] and piezoelectric moduli [eee0].

The complete strong and weak formulation of the model above resulting in the finite element solution is given in (Wein

et al, 2008a), a general description of multiphysics simulation can be found in (Kaltenbacher, 2007).

3 Applying SIMP Optimization

The SIMP method is an interpolating topology optimization method which has proved to be very efficient for mechan-

ical problems (especially the compliance problem) but has been also applied successfully to other applications. The

standard textbook (Bendsøe and Sigmund, 2003) has a strong focus on SIMP with various aspects and applications.

One of the earliest application of topology optimization to piezoelectric material is (Silva and Kikuchi, 1999) whereas

(Kögl and Silva, 2005) explicitly refer to the SIMP method.

The idea is to introduce the design variable ρ (pseudo density ), modifying the material properties in such a way that

a local value 1 for ρ(xxx) with xxx ∈ Ωopt represents material and a small value ρmin represents void material (e.g. air).

The interpretation of void material in this context is discussed in (Wein et al, 2008a). ρ has a physical interpretation

only for these two extremal values, nevertheless has the continuous approach advantages compared to an integer

programming problem where only the limit values are possible.

The design vector ρρρ = (ρ1 . . .ρNe)
T with ρe ∈ [ρmin : 1] shall be piecewise constant within the Ne finite elements of the

design domain.

We now introduce the notation (̃·) for elements modified by the design parameter. Limiting the optimization domain to

the piezoelectric layer, the following material parameters are formed by applying the design variable: [c̃ccEe ] = µc(ρe)[cccE0 ],

ρ̃m
e = µm(ρe)ρm, [ẽeee] = µe(ρe)[eee0] and [ε̃εεSe ] = µε (ρe)[εεεS0]. In contrast to common SIMP optimization we set all interpolation

functions µ to the identity function µ(·)(ρe) = ρe.

Applying the finite element method with the new ersatz material properties, the piecewise constant ρe can be written

in front of the bilinear forms. The components of the local mechanical stiffness matrix are given as:

k̃uupq =
∫

Ωe

(
Bu

p
)T

[c̃ccEe ]Bu
q dΩ= µc(ρe)

∫

Ωe

(
Bu

p
)T

[cccE0 ]Bu
q dΩ= ρekuupq.

Hence the element wise SIMP design variable ρe multiplies the local mechanical stiffness matrix as K̃KK
e
uu = µc(ρe)KKKeuu,

similar for the mass matrix M̃MM
e
uu = µm(ρe)MMMe

uu, the coupling matrix K̃KK
e
uφ = µe(ρe)KKKeuφ and the permittivity matrix K̃KK

e
φφ =

µε (ρe)KKKeφφ .

Assuming a sinusoidal single-frequency excitation, a Fourier transformation of the system solves the steady state

solution in the complex domain with imaginary unit j. Damping is introduced by the Rayleigh model with

SSSeuu(ω) = KKKeuu+ jωCCCeuu−ω2MMMe
uu; CCCeuu = αKKKKeuu+αMMMMe

uu.

The global system of the finite element simulation is now written as





SSSumum(ω) S̃SSumup(ω,ρρρ) 000
S̃SS
T
umup(ω,ρρρ) S̃SSupup(ω,ρρρ) K̃KKupφ (ρρρ)

000 K̃KK
T
upφ (ρρρ) K̃KKφφ (ρρρ)








uuum(ω,ρρρ)
uuup(ω,ρρρ)
φφφ(ω,ρρρ)



 =




fff m(ω)
000
000



 ,
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or in shortened form as
̂̃SSS(ω,ρρρ) ûuu(ω,ρρρ) = f̂ff (ω) or ̂̃SSS ûuu= f̂ff .

Note that with the presented form any topology of the piezoelectric layer can be expressed on the same finite element

mesh. ûuu does not explicitly depend on ρρρ but implicitly. We ignore this difference for the sake of a clearer formulation of

the objective functions.

4 Objective Functions

A significant portion of work on topology optimization of piezoelectric material is published in cooperation with E.C.M

Silva. They all share an objective function that is based on the so called mean transduction in combination with a

minimization of the mechanical stiffness. This also holds for the work on topology optimization (Nakasone et al, 2008).

The mean transduction gives a measure for the coupling between the electrostatic and mechanical field, or as for-

mulated in (Kögl and Silva, 2005) “. . . the conversion of electric into elastic energy and vice versa”. It is based on two

load cases and choosing the load cases properly, the maximization of the transduction corresponds to the maximiza-

tion of the displacement with respect to the load cases. Being a nodal force and a charge, these load cases result in

our coupled model in vanishing piezoelectric material for a maximal transduction (Wein et al, 2008a) and is such not

appropriate for the given model.

Our analysis of the mean transduction also showed, that for a nodal force excitation the given model shows the

highest electric potential for a vanishing piezoelectric layer. This is due to the non-physical excitation and the linear

model. A vanishing ceramic layer represents the least stiffness and hence the largest bending at the point of excitation.

This results in a maximal (local) strain and hence a maximal electric potential. This shows that the measure of the

electric potential as objective function shall be considered with care (note that we assume a pressure excitation in the

present work).

In (Bin Zheng and Gea, 2008) the objective function is the efficiency factor (note that only a static model is considered

and the properties below are real valued)

η =
Welec

Wtotal

with Welec = 1
2φφφ

T K̃KKφφ φφφ and Wtotal =Welec +Wmech = 1
2φφφ

T K̃KKφφ φφφ + 1
2uuu

T K̃KKuu uuu.

It has been found and described in (Weller, 2009) that maximizing η involves the minimization of Wmech, also known

as maximization of the stiffness. The stiffness maximization is the usual application of the SIMP method but for the

given objective Weller showed that the optimizer may sacrifice Welec for the sake of a large Wmech (stiff material). See

also Figure 2(c).

As we may assume in typical energy harvesting applications the ambient energy to be sufficiently large, we choose

the electric energy and the potential as our optimization functions.

An objective function J (ûuu(ρρρ,ω)) = J needs the property to map to a real value J :→ R to be comparable. Hence

we have the optimization problem maxρρρ J with the implicit condition ̂̃SSS ûuu = f̂ff and the box constraints ρe ∈ [ρmin : 1].
J = Jφ = φφφT LLLφφφ∗ or J = Jelec = φφφT K̃KKφφ φφφ∗ with φφφ∗ a vector with complex conjugate electric potentials of the solution

vector. The matrix LLL has only entries on its diagonal. The diagonal entries corresponding to the potential nodes on the

free electrode are set to 1 otherwise they are set to 0. Hence we can also write Jφ = ûuuT LLLûuu∗ what corresponds to the

form we used in (Wein et al, 2008a) where further details can be found. As we want to maximize the potential it does

not matter, that the objective function actually represents the squared potential. The piezoelectric model describes a

inhomogeneous potential field that is averaged by the equipotential layer formulation. Note, that for this averaging also

the potential nodes corresponding to piezoelectric areas set to void by ρmin are considered. But due to low permittivity

the contribution is correspondingly low.

The energy formulation Jelec = φφφT K̃KKφφ (ρρρ)φφφ∗ can be read as an assembly (or sum if the dimensions are adjusted) of

the element matrices and solutions Jelec =∑Ne φφφ
T
e µ(ρe)KKK0φφ φφφ

∗

e . For elements with a pseudo density ρe close to ρmin the

contribution is negligible.

A key feature of the SIMP method is, that due to the adjoint method it is relatively easy to find the partial derivatives of

the objective function with respect to the design variables. This is called sensitivity analysis and for J = Jφ and J = Jelec

the gradient is given as

∂J
∂ρe

= 2Re{λλλT
∂ ̂̃SSS
∂ρe

φφφ}

where λλλ solves the adjoint equation ̂̃SSSλλλ = −LLLφφφ∗ for Jφ and ̂̃SSSλλλ = −K̃KKφφ φφφ∗ for Jelec. For the derivation we refer to

(Jensen, 2007).
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Having the objective function, its derivative and (for the moment) no further constraint function, an external nonlinear

optimizer can solve the problem. State of the art in topology optimization is the Method of Moving Asymptotes (MMA)

by Krister Svanberg. We use the fast and globalized implementation SCPIP (Zillober, 2002) via our interface C++SCPIP

(Wein, 2007).

(a) Potential (b) Electric Energy (c) Energy Conversion

Figure 2: For the model introduced in Figure 1(a) we apply (for the static case) three different objective functions. The

optimal topology/ material distribution of the piezoelectric material Ωp is displayed. Black represents material,

white no/void material and grey values unphysical “intermediate” material. The square underlying material

plate Ωm receiving the pressure excitation is not optimized. Figure 2(a) maximizes for φ on the free electrode,

Figure 2(b) integrates within the ceramic φT K̃KKφφ (ρρρ)φφφ and Figure 2(c) maximizes the energy efficiency factor

by increasing the mechanical stiffness.

5 Results

We have a mono-frequent system, driven by a harmonic pressure excitation. To evaluate our proposed method we

perform the optimization excitation frequencies from 10 Hz to 2000 Hz with a fine stepping. To handle the computational

effort the optimizer was limited to 200 iterations per frequency.

With the amount and location of piezoelectric material as design variable, one could expect that the optimizer tries

to build a system with a resonance frequency as close as possible to the excitation frequency. What makes actually

the difference between the objective functions for potential and electric energy, are vibrational patterns corresponding

to a mechanical resonance but with compensating positive and negative strains (see our reference publication for more

details). For this case the integral electric energy might be high but electric potential between the electrodes is low.

Common SIMP optimization is based on a volume constraint limiting the maximal allowed fraction of material. This is

together with other techniques a common way to ensure that the design variable pseudo density is driven toward 1 or

some small ρmin for an interpretation of material or no/void material. Intermediate values, e.g. 0.5 (“half material”) have

no physical interpretation. In mechanics this could be seen as a corresponding local height of the layer at the element

(the so called variable thickness sheet problem) but in the piezoelectric case this is possible.

Having no engineering reason for a volume constraint we therefore have to validate the resulting pseudo density

distribution. This is called in SIMP terminology as greyness which is given (normalized to 1) as

ggrey =
∫

Ω
4∗ (1−ρ)ρdx.

Greyness values below 0.1 can be considered as sufficient distinct 0-1 result. For typical elasticity problems (maxi-

mization of the stiffness) the greyness cannot be used as a constrained as due to the concave structure the optimizer

tends to be locked by local optima. For the present problem, do we observe greyness problem mostly when optimizing

for Welec (see Figure 3(d) and 4(k)). Adding a greyness constraint works in principle but in several cases below the first

resonance frequency (see Figure 3(d)). The impact to the resulting objective value is for most frequencies negligible,

see 3(b).

6 Conclusions

We have presented a method to construct an energy harvester that converts the harmonic deflection of a thin plate

by the help of piezoelectric material into electric energy. By the help of topology optimization the objective functions

electric potential and electric energy can be increased significantly.

We have applied the method to several sinusoidal excitations. This parameter study revealed problems with respect

to robustness 3(a) and 3(b) and greyness 3(d). It shall be mentioned that due to the complexity of highly nonlinear
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Figure 3:We perform several optimizations for target frequencies from 10 Hz to 2000 Hz. In Figure 3(a) for Jφ = φφφT LLLφφφ∗

and in Figure 3(b) for Jelec = φφφT K̃KKφφ (ρρρ)φφφ∗ (one time the greyness constrained applied). For reference the

value for the initial full piezoelectric plate is given. In Figure 3(c) we see the impact of the amount of material

to adjust resonance frequencies. In Figure 3(d) we see that for the energy objective function such a constraint

is necessary but also that it works not reliable. Due to the linear model and assumed damping values are the

magnitudes of the objective function not realistic what has no impact to the topology.

(a) 200Hz Jφ (b) 200Hz Jelec (c) 210Hz Jelec+ggrey (d) 600Hz Jφ (e) 620Hz Jelec (f) 610Hz Jelec+ggrey

(g) 1100Hz Jφ (h) 1110Hz Jelec (i) 1110Hz Jelec+ggrey (j) 1950Hz Jφ (k) 1850Hz Jelec (l) 1850Hz Jelec+ggrey

Figure 4: Some sample optimization results from the parameter studies in Figures 3(a) and 3(b). See Figure 2(a) for

an explanation of the color scale.

topology optimization problems it is common practice to perform manual tuning of optimization parameters for a given

problem. On the other hand is improved robustness a necessary feature for multiple-frequency broadband optimization

as a next step.

The focus of this work is the presented method. The feasibility of the resulting topologies with respect to constructibil-

ity respectively manufacturability has not been discussed. A modification of the model in Figure 1(a) with respect to

material, thickness and glue layer might ease this issue. As mentioned in (Bendsøe and Sigmund, 2003) does topology

optimization provide guidelines and hints for designers and not the final blueprint.

An important finding in (Wein et al, 2008b) has been the ability of the optimizer to create vibrational patterns that

resonate by cancelling positive and negative strains within the piezoelectric layer. This effect could be only partially
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repeated.
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Wein F, Kaltenbacher M, Leugering G, Bänsch E, Schury F (2008b) Topology optimization of a piezoelectric-mechanical

actuator with single- and multiple-frequency excitation, submitted for review to COMPEL

Weller E (2009) Topology optimization of a piezoelectric energy harvester. Master’s thesis, University of Erlangen-

Nuremberg, Germany, in German

Zillober C (2002) SCPIP - an efficient software tool for the solution of structural optimization problems. Struct Multidisc

Optim 24(5):362–371

206 SENSOR+TEST Conference 2009 - SENSOR 2009 Proceedings II




