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1. Introduction

The  aim  of  this  article  is  to  facilitate  automatic  treatment  of  three-dimensional  measurement  data.
Especially the measurement of low frequent magnetic fields with an isotropic field probe can be seen as
an example for higher dimensional sensor data.
Magnetic fields are measured and judged according to their possible negative influences on the human
body.  For  a  meaningful  evaluation  of  non-sinusoidal  fields  some methods  are  applied  in  frequency
domain [1], others on estimation of time derivative or the absolute change of magnetic flux density, which
are responsible for induced body currents ([2],[3]).  These are restricted by norms and guidelines [4].
Induced body currents can easily be calculated with measured field data of magnetic flux density and a
plain  loop  model  of  human  body.  Therefore,  a  one-dimensional  time  series  is  required.  The  three-
dimensional time series of measured data has to be transformed into a one-dimensional one. If only one
source  is  assumed,  this  can  easily  be  realized  with  a  special  signal  processing  after  or  during
measurement which is based on the eigenvalues of the sample covariance matrix. If there are two ore
more sources superimposing the fields can be separated with automatic procedures. The use of blind
source separation algotithms like Independent Component Analysis is one of the possible alternatives.
The  introduced  methods  enable  the  automatic  detection  of  superimposed  fields  which  can  be
implemented in measurement equipment. This feature can help the user to valuate the field situation on
the spot (e.g. in a working area). The introduced methods will be applicated to measurement data in two
examples.

2. Theory and Methods

The measuring of a broadband magnetic field by means of a three-dimensional field probe is assumed.
The time discrete data of such a measurement can be depicted as a logic record. If every measured
vector of magnetic flux density is time accordingly written into each column of a matrix, the data which
encompasses N samples, the matrix of measured data will result in (1).
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This matrix is the basis of further considerations. To calculate a one-dimensional time series from matrix
(1) the equation (2) is often suggested which estimates the absolute value of the field vector for every
point in time.
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This equation can be used for all N samples of the measurement. The time series B(n) of absolute values
is one-dimensional. The resulting time series has, however a deviant frequency spectrum and adifferent
shape in time domain.  Since the evaluation of  magnetic  fields takes place in  the time domain or  in
frequency  domain  the  equation  (2)  is  not  siutable.  It  is,  therefore,  necessary  to  calculate  a  one-
dimensional time series which is usable for exposition evaluation. One solution of this problem is a linear
transfomation in measurement space as a rotation of one axis of the coordinate system on the field
vector. This operation can be performed with a double rotation (Fig. 1).
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Fig. 1 Field vector in reference measurement coordinate system

A first rotation around the z-axis can be performed with matrix equation (3).
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A second rotation around the new y’-axis can be calculated with equation (4).
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This two rotations of the z-axis on the field vector can be performed as one matrix operation (5).
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The  matrix  elements (trigonometric  functions of  E  and  D )  are calculated from one point  in time of
measured data. This entails two diadvantages:

B The processing which is applicated on the whole measurement data is based on data at one
point in time. An adverse point in a signal with a small signal to noise ratio leads to a ill solution.
Practically, one has to estimate this point in time manually.

B This operation does only work when the field of one source in a certain position is measured. 

If a superimposition of two or more field sources is measured this operation does not work. In this case
the superimposed fields have to be separated. In case  s field sources are superimposed the resulting
field  vector  and  thus  each  column  of  the  matrix  Bm can  be  depicted  as  a  vectorial  addition  of  s
components in each (e.g. the n-th) time step.

1 2( ) ( ) ( ) ( )res sB n B n B n B n" / / /! (6)

Assuming that not only the position of the field sources, but also the scanning position is stable, the
superimposition for each source can be factorised into a product (7).
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Each unit vector  iv  contains data concerning the direction of the field vector of the  i-th source. Each
coefficient bi, on the other hand, contains data concerning the absolute value and the algebraic signs in
the shape of a time series. Equation (7) can be written as a general matrix equation, and as signal model
(8) where A is the mixing matrix and Bs is the source matrix.

m s" ,B A B (8)

Bm: matrix of measured data
A: mixing matrix
Bs: matrix of one-dimensional time series 

Thus one-dimensional time series evolve from the factors bi in (7) which form the rows of the matrix Bs.
This matrix is transformed by the mixing matrix A on the measured data Bm. A as well as Bs are generally
unknown.  The number of  sources  s is,  however  restricted to  three for  the assumption that  a  three-
dimensional  measuring in  only one spatial  measurement  position took place.  This  restriction can be
broadened by introducing several more field probes in space
By analysing the sample covariance matrix Ĉ  one can estimate the number of uncorrelated sources. If
the applied sensors are induction coils there is no average value in the three axis signals and thus the
expected value is zero. The sample covariance matrix results in (9).
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Thereby, the sample covariance matrix consists of covariance of source signals and noise. If noise is
negligible the number of eigenvalues different from zero is the number of uncorrelated field sources. In all
measurements  there  are  measurement  errors  and  noise,  thus  the  noise  covariance  matrix  and  the
resulting eigenvalues have to be analysed. 
If  eigenvalues  of  Ĉ  are  compared with  each other,  a  simple  estimation  of  uncorrelated  sources is
possible. There are other methods to estimate the number of sources using information criteria ([5], [6]). If
one source is assumed a transformation to obtain a one dimensional time series can be calculated with
the eigenvector d to the (theoretical one) eigenvalue different from zero.

( ) mB n " ,Td B (10)

Thus a method to calculate a one-dimensional time series from three-dimensional measurement data
exists which can be implemented in a software for further field evaluation.
If the analysis of the covariance matrix shows a superimposition of field sources a separation is desired.
On the one hand can a separation with known column vectors of matrix  A be performed, on the other
hand a blind source separation can be performed with special  assumptions to the time series in the
matrix Bs.
If matrix A with its independent column vectors in equation (8) is known, and the influence of errors and
noise is negligible, the inversion can be depicted by means of equation (11).
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Such a division can only be applied if the direction vectors in A can be determined, e.g. by a calibrational
measuring. It is also possible to calculate them out of the measurement data Bm if periods in which only
one source is active can be detected within time of measurement. Submatrices of the measuring data
matrix can help finding these periods by applying the analysis on the eigenvalues. The direction vectors
of the fields and thus the column vector of A can be calculated out of these periods. A further advantage
results from a spatial filtering facility. Decomposition (11) can be used to eliminate the fields of disturbing
sources (e.g. resulting from line currents), especially when EMC measurements are performed. A further
method is the decomposition with Independent Component Analysis (ICA). By means of ICA the mixture
of signals measured by several sensors can be separated ([7],[8]). An example for the special case of
three-dimensional  measurement data of  magnetic  fields can be found in [9].  One assumption of  the
method is the independence of the source signals (superimposed fields). The precondition of statistic
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independence is fulfilled e.g. by the superimposition of the pulse-shaped field of a welding device and the
harmonic alternating field of a line current. The method proceeds as follows:

B Centering (set average value to zero) and whitening (set variance to one) with PCA.
B A contrast criterion (e.g. kurtosis) is being set up to determine the statistic independence of the

PCA components.
B Solution of the optimisation task: Maximum statistic independence (minimum kurtosis!).
B Recharge to source time series through an adjustment calculus (mean value and variance).

Since the PCA is an element of the method it also contains the analysis of eigenvalues. It is thus possible
to conduct a division of the superimposed field components. The application on several sinusoidal fields,
however, will not work. It results in an orthogonal pair of functions which does not allow an inversion to
the source components without further pieces of information. 

3. Experiments

3.1.Number of sources and one-diomensional time series

The data of a three-dimesional measurement (Fig. 2) have to be transformed into a one-dimensional time
series.

Fig. 2 Data of a three-dimensional measurement of a magnetic field

Thus eigenvalues have to be calculated firstly. With equation (9) and N=2000 samples eigenvalues result
in 1 0.00037 " , 2 0.00177 "  and 3 3.37317 " .
From analysis of eigenvalues it can be assumed that there is one source. It is possible to use the  d3

eigenvector for a calculation with equation (12). All three eigenvectors are, in this example, put into a
matrix D to demonstrate the effect of projecting the measured data on the eigenvectors. The projection
results in equation (12).

123 m" ,TB D B (12)

The rows of B123 as the result of equation (12) are shown in Fig. 3.

430 SENSOR+TEST Conference 2009 - SENSOR 2009 Proceedings II



Fig. 3 Projections on the three eigenvectors calculated with equation (12).

It is obvious that nearly the whole variance of measured data is put in the third row (B3). Thus a projection
on the eigenvector d3 (belonging to the third/ highest eigenvalue) is the desired operation to estimate a
one-dimensional time series.

3.2.  Separation of two superimposed field sources with Independent Component Analysis

ICA is applied in this example to separate  the magnetic fields of a welding device and a line current.
Measured data in the three axis are shown in Fig. 4.

Fig. 4 Superimposed magnetic fields of a welding device and a line current

From  one  eigenvalue  of  zero  ( 1 0.07 " )  and  two  eigenvalues  distinct  from  zero  ( 2 1.18457 " ,

3 6.28617 " ) it is possible to infer that a superimposition of two sources took place. The ICA algorithm
provides the time series depicted in Fig. 5.

SENSOR+TEST Conference 2009 - SENSOR 2009 Proceedings II 431



Fig. 5 Independent Components calculated with fast ICA

The independent components  accord to the source time series. An Adjustment calculus with measured
data and independent components allows to reconstruct the source time series and the direction vectors
of the magnetic flux density of each source.

4. Results and Discussion

The introduced methods can be used to handle three-dimensional  measurement data.  Especially the
application on magnetic vectorfields can facilitate their evaluation.
The  observation  of  the  eigenvalues  of  time samples  allow  the  analysis  of  measurement  data  while
measuring. This observation results in additional information about sources in the measured data.  The
separation of superimposed sources enables an evaluation of each source and a spatial filtering to fade
out  disturbing  sources  during  the  measurement.  Especially  when  a  superimposition  of  sources  is
measured the ICA algorithm offers an opportunity to separate fields from each other.
The new possibility to detect a superimposition of two field sources under certain conditions emerged out
of exemplary data. Superimposed fields have been separated from each other by means of ICA. This
method can help to evaluate each source distinctly - especially when pulsed fields are measured. The
introduced methods will be implemented in terms of new measurement equipment.
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