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Abstract: 

Beamforming techniques are widely used in many fields of research like sonar, radar, wireless 
communication and speech processing applications. Beamforming algorithms are mainly used for signal 
enhancement and direction of arrival estimation. In applications for tracking mobile communication 
partners like speaker or aircrafts, beamforming algorithms are employed to estimate the direction of 
arrival. 

Beamforming processing is always accompanied by high computational costs, which are challenging for 
embedded devices. Recent approaches process the calculation in frequency domain to reduce the 
processing time. However, in many cases the processing is still very slow and cannot be used for real-
time processing. Alternative real-time solutions based on FPGAs face the drawback of long development 
processes and restricted communication interfaces. 

This paper introduces a novel implementation approach based on System on Chip (SoC) technology 
with optimized Hardware-/Software Partitioning for real-time delay and sum beamforming. Basis for 
evaluation is a runtime measurement of software implementations to determine computation steps with 
high processing time and parallelization capabilities. Extracted computation steps are implemented on 
an associated FPGA with full pipelined architecture for high data throughput and fast processing speed. 
The complexity of the deduced architecture is evaluated regarding data length and data width with 
respect to computational accuracy. 
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Introduction 

Nowadays, beamforming algorithms are used in 
numerous fields of applications. One field of 
application is the data generation as it is done in 
sonar systems to isolate ocean waveguide 
information [1]. As another example, the 
automotive industry uses beamforming 
algorithm for data fusion approaches to merge 
signals from distinct short range radar systems 
[2]. However, a main application for 
beamforming algorithms is signal quality 
enhancement. On this account, beamforming 
methods are used in wireless applications [3] 
and RF designs [4] to enhance the signal quality. 
Another field of application is spatial filtering 
focusing on separation of mutually effecting 
frequencies. In result the signal quality is 
increased as well [5]. Furthermore, beamforming 
algorithms are used in speech processing 
applications to improve speaker signal quality 
from a certain direction. In result, the signal 
quality increases and suppressing unintended 
influencing signals generated by sound sources 
in different directions like background noises [6].  

However, beamforming algorithms can be used 
in opposite direction. The previous fields of 
application mainly focused on signal 
enhancement while another main application of 
these algorithms is direction of arrival estimation 
[7]. On basis of beamforming the direction of 
arrival is identified and used for speaker 
localization and tracking [8] or determining the 
position of aircrafts [9]. For this applications 
steered beamformers are used accompanied by 
high computational effort challenging embedded 
devices. 

In the following, possible hardware acceleration 
techniques for beamforming algorithms 
determining the direction of arrival are analyzed 
and advantages and disadvantages of the 
distinct approaches are discussed. Basis for 
further considerations is the analysis of runtime 
and calculation complexity of a common delay 
and sum (DAS) beamformer. For elucidation of 
the theoretical values an exemplary 
implementation of the beamformer is used. On 
this basis, a novel System on Chip (SoC) design 
will be derived. The novel approach will be 
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described in detail and evaluated with respect to 
runtime and hardware utilization. Finally, the 
results are presented and critically discussed in 
conjunction with a summary of the paper and 
possible improvements in future works.  

Related Work 

As previously mentioned, the main problem of 
beamforming algorithms is the high 
computational complexity. One possibility to 
realize a beamforming algorithm for direction of 
arrival estimation is the calculation in time 
domain providing simple implementation effort, 
but reducing the angle accuracy drastically. This 
raises from the direct proportional dependency 
of sampling rate �� and angle resolution 
represented by following equation: 

Δ� = ���
�∗� ���(�) 

� � (1) 

with Δ� representing amount of delayed samples, 
intermediated sensor distance �, input angle �, 
signal speed � and � ∈ {1,2, . . �} where M is the 
amount of sensors. This implies the increasing of 
accuracy can just be obtained by increasing the 
sampling rate. For time domain calculation all 
input signal are delayed by  Δ� in respect to input 
angle �� with � ∈ {1,2, . . �} where � represents 
the measurement window size. In time domain 
each sample of the measurement window 
represent an angle according to equation (1) 
(comp.Fig.1). Afterwards the delayed signals 
according to �� are summed up. This procedure 
is repeated for all N. The maximum amplitude of 
the summed values represents the direction of 
arrival. Considering the described computation a 
calculation complexity of �(��) can be 
identified. 

Because of the high computational costs 
accompanied by low accuracy the calculation is 
transferred to frequency domain. In this context 
the convolution in time domain is reduced to a 
multiplication in frequency domain in conjunction 
with less computational effort. Another benefit is 
the representation of the time delay Δ as phase 
shift in frequency domain defined as steering 
vectors. In consequence an arbitrary angle 
resolution can be achieved restricted by 
computational power only. Therefore, the 
calculation complexity in frequency domain 
results in �(�� ∙ ����) where �� represents the 
amount of angles with respect to angle resolution 
and ���� represents the amount of frequency 
components resulting of FFT usage and defining 
FFT resolution. 

The previously discussed arguments are 
universally valid for beamforming algorithms. 
However, in last decades numerous versions of 
beamforming methods have been developed. 
Each of this algorithms rely on additional non 

trivial calculations effecting the calculation 
complexity. One example is Minimum Variance 
Distortionless Response (MVDR) beamformer 
depending on an inverse calculation of � × � 
matrix [10]. Another example is the Multiple 
Signal Classification (MUSIC) beamformer 
depending on calculation of eigenvalues of an 
equal sized matrix [11]. 
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Fig. 1: Standard beamformer with delay Δ and input 
angle Θ. 

Consequently, the transfer in frequency domain 
alone is not sufficient to solve the computational 
effort problem. On this account, the algorithms 
has been realized on specialized Hardware like 
Field Programmable Gate Arrays (FPGA) [12] or 
Graphics Processing Units (GPUs) [13] beside 
powerful PCs.  

FPGA based realizations provide a high degree 
of flexibility with regards to correlated 
requirements as well as maximum parallelization 
capabilities. Another big benefit of FPGA usage 
is the low power consumption leading to a variety 
of possible applications. On the contrary, FPGA 
development is accompanied by long 
development times reasoned by specialized 
hardware implementation for the specific use 
case. Furthermore, there is a reduction of 
usability through additional specialized 
interfaces for data transfer reducing the 
throughput of FPGA designs.  

On the other hand, GPUs have very high power 
consumption, but offer high performance and 
good parallelization characteristics with high 
throughputs and high processing speed. 

In summary, a normal PC is powerful and can 
handle the specified algorithms in acceptable 
computing time, but is not suitable for mobile use 
due to the lack of mobility and high power 
consumption. FPGAs have low power 
consumption and high parallelization capabil-
ities, but facing the drawback of long 
development times. GPUs, on the other hand, 
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have high power consumption but offer 
enormous throughput and acceleration 
possibilities. 

A compromise between power consumption, 
mobility and hardware acceleration is 
represented by the SoCs from Xilinx and Altera. 
The combination of ARM Processor and FPGA 
provides high flexibility and parallelization 
capabilities with low power consumption and 
provides novel possibilities for hardware/ 
software partitioning due to standardized flexible 
communication interfaces. For this reason, this 
architecture provides a suitable basis for 
accelerating beamforming algorithm for the 
usage on embedded devises.  

For identification of potential task for hardware 
acceleration, the following chapter provides a 
detailed description and run time analysis of a 
standard beam scan algorithm represented by 
the DAS beamformer.  

Algorithmen Analysis 

To analyze the most popular representative of 
the beam scan algorithms, the DAS beamformer, 
the input signal of the sensors is defined as 
follows: 

��(�) = ��(�) ∗ �(�) + ��(�)  (2) 

Where � represents the spatial response of 
signal source � with addaptive gausian noise � 
at time �. The beamformer output can be 
represented as: 

�(�) = ���(�) (3) 

Where ω = [ω1, ω2,…,ωM] defines the weights of 
the input channels and H is the Hermitian 
transpose. Transforming the input signal �� to 
frequency domain equation (2) has to be 
rewritten as: 

��(�) = ��(�)�(�) + ��(�)  (4) 

With �� representing the result of applying a 
SFFT to the corresponding input signal ��. 
Furthermore, � is the signal spectrum of signal 
source � and noise spectra �. This leads to 
beamformer output definition: 

��(�) = ��(�)�(�)  (5) 

With spatial filter � describing the time delay of 
equation (1) in frequency domain by a phase 
shift with respect to input angle �. 

The Delay and Sum Beamformer determines the 
direction of arrival by successively scanning of 
the power spectrum. Input angle � is defined by 
the maximum magnitude of the power spectrum 
defined by [14]: 

�(�) = �
�

∑ |�(�)�| = ���(�)�(�)���
���        (6) 

                                            = ������  (7) 

Where ��� is the well-known covariance matrix 
of input signal �(�) defined by ��� = �(�)�(�)�. 
Spatial filter � represents the steering vectors 
defined by [14]: 

�(Θ) = �����(�, Θ)�, … , ����(�, Θ)�� = (8) 
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In this context, term ����(�,�) represents the 
phase shift of input signal � with respect to input 
angle �, frequency bin � and sensor �. On this 
basis � has to be defined as: 

�(�, Θ) = ���
��

� sin(Θ)  (9) 

Where � is the wavelength of frequency �. In 
consequence the direction of arrival is described 
by the maximum amplitude of equation (7): 

������{�(Θ)} = ������{�(Θ)�����(Θ)}   (10) 

The described algorithm results in the process 
flow depict in Fig. 2. 

In
it

R
e

co
rd

 D
a

ta

S
F

F
T

C
a

lc
 R

x
x

C
a

lc
 P

o
w

e
r

G
e

t 
M

a
x

 

Fig. 2: Process flow for Beamforming computation. 

At begin of the process all constants are 
determined including the steering vectors, since 
they just depend on angle granularity and FFT 
resolution. The “Init” process will be ignored in 
the further analysis, since the initiation costs just 
appear ones and effect the startup of the system 
only. The second step is the acquisition of data 
consisting of data sampling and copying in a 
predefined buffer. The runtime has complexity of 
�(�����) because every sample of the 
measurement window has to be copied ones for 
each input channel.  Therefore, ���� is the length 
of measurement window defining FFT length and 
FFT resolution respectively. The following block 
is SFFT describing short-time Fourier transform 
of length ����. If ���� = 2� with � ∈ ℕ it can be 
shown that the complexity of SFFT is 
�(���� log(����)) and the accumulation for all 
channels results in �(����� log(����)). 
Afterwards, the calculation of the � × � 
matrix ��� ∈  ℂ takes part. According to 
definition of ��� = �(�)�(�)�, M² complex 
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values has to be determined. For the 
determination of one component of matrix ��� M 
complex multiplications and M-1 additions has to 
be executed leading to a runtime complexity 
of �(��) for one frequency component. The 
process has to be repeated for each frequency 
bin successively conducting in runtime 

complexity of �(����
� ��). According to the 

master theorem, if � ≪ ���� the complexity for 
��� determination can be estimated by �(����). 
The final power calculation from equation (7) is 
realized in the subsequent “Calc. Power” block. 
Therefore, the steering vectors given by 
equation (8) are multiplied with the determined 
matrix ��� to archive the power level 
corresponding to input angle �. The computation 
of equation (7) has to be repeated for each 
possible input angle and for each frequency 
component resulting in runtime complexity of 

� �����
� ��� ∙ �(������). The computational 

costs for ����� can be estimated by �(��). The 
result of this matrix multiplication is a vector of 
length M which has to be multiplied by the 
steering vector as well. In consequent, the vector 
multiplication has to be estimated by �(��). 
Subsequently, the absolute value of the result 
has to be determined. The calculation is 
accompanied by two multiplications for square 
computation, one addition and one square root 

determination resulting in �(3�� log ��
��(���∗��)) 

with �� defining number of bits [15]. In 
consequence the total runtime complexity is 

�(����
� ��) ∙ (�(�� + �� + 3�� log ��

��(���∗��)). 

Following the master theorem the complexity 
can be reduced to �(������).The last task is the 
maximum detection with a trivial runtime of 
�(��). 
For clarification of the theoretical time 
estimation, the system has been implemented 
on a Cortex A9 ARM Processor with the purpose 
to measure the time for each described task. For 
evaluation a FFT resolution of 1024, an angle 
granularity of one degree and three input 
sensors have been chosen. The results are 
depict in Tab.1.  

Tab. 1: Results of runtime measurement for DAS with 
3 Sensoren, NFFT 1024 und NA 180 implemented on 
ARM Cortex A9 Prozessor. 

Task Complexity Time (ms) 

Record Data �(�����) 1,313 

SFFT  �(���� log(����)) 1,668 

Calc Rxx �(����
2 ��) 

5,124 

Calc Power �(������) 533,181 

The results show that the runtime of �(������) 
in combination with the expensive constant costs 
for square root calculation effecting the overall 
runtime massively. In consequence the 
theoretical consideration and the exemplary time 
measurement identifying the power calculation 
as bottleneck in the localization process. 

The following chapter describes a novel 
approach for hardware acceleration bases on 
SoC Architecture with the aim of dissolving the 
bottleneck. 

System on Chip Architecture 

To handle the identified bottleneck a Xilinx Zynq 
SoC is used. The SoC combines a Cortex A9 
ARM Processor and FPGA with the standardized 
AXI-Interface as communication medium. The 
Aim of the design is to use the parallelization 
capabilities of the FPGA to dissolve the 
bottleneck and improve the throughput of the 
power calculation but also keep the most 
possible flexibility to compensate the FPGA 
development costs.  

A localization system bases on beamforming 
algorithms usually depends on the amount of 
sensors M, the scanning region defined by angle 
range, the granularity of the angles resulting in 
number of steering vectors �� and length of 
measurement window ���� given by FFT 
resolution. To ensure the greatest possible 
flexibility and reusability of the FPGA design, the 
realization should be independent from this 
parameters as fare as possible. 

By considering equation (7) and the 
corresponding runtime complexity it is clear that 
all this parameters influencing the calculation. 
The amount of angles and angle granularity are 
indirectly given by the amount of steering 
vectors. The steering vectors depend on the 
frequency components and possible input 
angles only whereby a calculation in the 
initialization phase is sufficient. On the other 
hand, the calculation of ��� has to be adapted 
with each measurement window. Nevertheless, 
the amount of steering vectors has a huge 
memory complexity since there is one complex 
steering vector for each frequency component, 
input angle and sensor. This leads to a memory 

usage of �(����
� ���) which represent a big 

challenge for FPGAs and the limited Block RAM 
resources to store all steering vectors initially. 
For this reason, the steering vectors has to be 
transferred from the DDR RAM separately.   

On this account, the task of the process flow 
depict in Fig.2 are mapped to the software part 
until task “Calc Rxx”, the other tasks are mapped 
to the hardware part connected by DMA 
controller and AXI-Lite interface. The resulting 
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system architecture is show in Fig.3. The 
maximum detection has been moved to the 
hardware part to reduce communication costs. 
After power calculation �� values have been 
generated and have to be transferred to the 
software by a DMA Controller with subsequently 
maximum detection. However, usually just the 
direction of arrival is needed which is 
represented by one angle with maximum 
magnitude. Based on this just one angle need to 
be transferred if the maximum detection is 
realized on hardware.  
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Fig. 3: System architecture with HW-/SW-Partitioning. 

Since a huge amount of data has to be 
transferred between processor and FPGA a 
DMA controller is used to transfer all necessary 
data from DDR RAM to FPGA by direct memory 
access sequentially. Reversely, an AXI-Lite 
interface is used, since it provides less hardware 
utilization and simple usability for transferring 
low amount of data. After finishing the calculation 
process, the angel indicating the direction of 
arrival has to be transferred only, reasoning the 
usage of AXI-Lite interface. Additionally the AXI-
Lite interface acts as configuration interface as 
well. 

Reviewing equation (7) in detail it is evident, that 
the matrix multiplication can be divided in three 
parallel vector multiplications. This vector 
multiplications can be efficiently implemented 
with shift registers. The following vector 
multiplication proceeds in parallel with one clock 
cycle delay (see Fig.4).  

 

Fig. 4: Schematic power calculation of equation (7) 
with parallel vector multiplication (gray) for M=3. 

This calculation has to be carried out �� times 
without changes of the ��� values. For this 
reason, the values for ��� are transmitted once 
for each frequency component to subsequently 

stream the steering vectors through the 
calculation architecture. This approach has been 
realized in the following FPGA design depict in 
Fig. 5. 
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Fig. 5: Block diagram of FPGA Design for parallel 
computation of equation (7) with maximum detection 
for M=3. Calculation instances are displayed dark gray 
routing and storing instances light gray divided in 
computation level L1 to L8. 

The data are transmitted to the FPGA by a 
simple streaming protocol, whereas the first M² 
data are identified as ��� entries. The ��� entries 
are stored in RXX Storage. All other incoming 
data are steering vectors which are stored in M 
separated FIFOs. The FIFOs representing one 
row of the matrix depict in equation (8). For 
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communication reduction the first row is not 
transmitted since it is constant one. The DMA 
Controller supports 32bit and 64 bit interfaces. 
For this implementation, 64bits are used which is 
logical divided in two 32bit values. The two 
values representing the real and imaginary part 
of one complex number. For this reason an 
arbitrary amount of sensors can be supported 
since they can be identified by a simple modulo 
calculation. 

After the ��� values and the steering vectors 
have been transferred, the data according to 
formula (7) and the schematically represented 
calculation in Fig.4 are transferred into the 
calculation architecture by a multiplexer. 

The first level of the calculation architecture (L1) 
is formed by M complex multipliers, which as the 
name implies, realizes a multiplication of 
complex numbers. To reduce the number of DSP 
cores, which are used to perform the 
multiplications, the calculation is realized as 
follows: 

z1 =  (a + bi)    z2 =  (c + di)  

�(�1 ∙ �2) = �� − �� (11) 

�(�1 ∙ �2) = (� + �)(� + �) − �� − �� (12) 

The advantage over the traditional variant is the 
reduction of four multiplications to three 
multiplications leading to a reduction of M DSP 
cores per calculation level. The resulting 
calculation tree is depict in Fig.6. 

a*c b*d a+b c+d

- *

-

Real Imag

b*da*c

 

Fig. 6: computation flow for complex multiplication for 
�1 ∙ �2. 

The realization requires three clocks for one 
complex multiplication until the result is obtained, 
but offers a full pipelined structure with maximum 
throughput. 

The multiplexer passes the corresponding matrix 
components from Fig. 4 one after the other to the 
complex multipliers. The multiplication results 
are transferred to level 2 (L2). In L2 the 
summation of the intermediate results takes 
place ending the parallel matrix calculation 
shown in Fig.4. The result of L2 is the row vector 
(x1, x2, x3) in Fig. 4. In L3 the multiplication of row 
vector x and steering vector takes place. For this 
reason the incoming steering vectors are 

delayed in such way so that they are present at 
the appropriate time at L3. The resulting 
summands are summed in level 4 leading to the 
sum representing the complex value of P(Θ). In 
L5 the square of the real and imaginary part 
transferred from L4 is calculated summed and 
forwarded to L6 for square root determination. 
For square root computation the Cordic-IP core 
is used, provided by the vendor. Result of L6 is 
the power value of the dedicated frequency 
component at input angle Θ. Since the results 
must be added over all frequency components, 
each value is stored in a BRAM. In each 
subsequent iteration the values are read and 
summed up in parallel. For this purpose, the 
number of angles �� must be transferred once 
during the initialization phase via AXI-Lite 
interface. In the last step, the maximum is 
determined by storing the current maximum and 
the associated angle index for each iteration, 
which can be accessed via the AXI-Lite interface 
after completion of the calculation. 

To determine the latency of the system, the 
respective latencies of the described blocks 
have to be added for each processing level. The 
multiplication in L1 and L3 requires three clock 
cycles while the summation in L2 and L4 takes 
one clock cycle only. Squaring the real and 
imaginary part in L5 is calculated in one clock 
cycle the subsequent summation requires one 
additional cycle. The calculation of the square 
root is more complex and requires 13 clock 
cycles until the result is available. The 
summation in L7 and the determination of the 
maximum in L8 are processed in one cycle 
respectively. In summery the latency of the 
design results in 25 clock cycles. The 
determination of the total runtime is given by the 
behavioral description of the system. To 
determine one power value, �� steering vectors 
must be shifted through the calculation 
architecture. All �� steering vector have to be 
active for M clock cycles since all M components 
of matrix ��� have to be shifted through the 
complex multipliers. This results in a runtime of 
��� + 25 clock cycles for one maximum 
determination of a frequency component. The 

process has to be repeated 
����

�
 times for each 

frequency component. The total runtime results 

in 
����

�
(��� + 25 + ����) with ���� defining the 

communication time for transferring the steering 
vectors from DDR RAM to FPGA. ���� can be 
estimated by �� clock cycles, but includes 
additional communication costs for DMA 
controller processing leading to inaccuracies in 
the estimated total runtime. The conversion from 
clock cycles to time units depends on the 
individual configured FPGA base frequency. 
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The correctness of the design has been verified 
by simultaneous simulations in Matlab and 
Vivado simulator. 

Results 

For evaluation purpose of the design 
architecture, the design has been implemented 
on a Zynq ZedBoard according to Fig.3. 
Correspondingly, the data acquisition, the 
determination of the SFFT and the calculation of 
the ��� matrix were implemented in software. On 
hardware the power computation and maximum 
detection have been realized with FPGA base 
frequency of 100 MHz. 

Reviewing, the FPGA design from Fig. 5 is 
independent of the number of steering vectors, 
the definition of the steering vectors and the 
resolution of the FFT. However, the design 
architecture still depends on amount of sensors 
M since each column in Fig.5, at level 1 to 3, 
represents one Sensor. For the usage of M 
sensors M complex multiplier and M summations 
have to be implemented in L1 to L3 influencing 
the resource utilization massively. The following 
figure depicts the used Look Up Tables (LUT) 
and Flip Flops (FF) in respect to the amount of 
sensors. 

 

Fig. 7: Resource utilization of FFs and LUTs in 
dependency of used Sensors and linear trend (light 
and dark gray lines). 

It can be observed that a linear correspondence 
between resources and amount of sensors has 
been achieved. This can be explained by the 
linear relationship between the number of 
sensors and the required complex multiplier and 
summations. An additional observation is the 
constant relation between amount of LUTs and 
FFs, furthermore the amount of resources is 
almost equal. 

For the realization of the multipliers DSP cores 
are used. The usage of the DSP cores 
depending on amount of sensors is shown in 
Figure 8. For the same reasons, a linear trend is 
identified for DSP usage. However, the number 
of DSP cores is twice as high as instantiated 
multipliers reasoned by DSP core input vector 
width. The calculation bases on the multiplication 

of 32 bit values while the DSP cores supporting 
a 25bit multiplication only. During synthesis, this 
is resolved by using 2 DSP cores reasoning the 
higher utilization. 

 

Fig. 8: Amount of used DSP Cores in dependency of 
used Sensors and linear Trend. 

The parameters �� and ���� have no influence 
on the hardware resources, but determining the 
overall processing time mainly. As derived in the 
previous chapter, a linear dependency of the 

runtime 
����

�
(��� + 25 + ����) is expected. To 

evaluate the processing time, the design from 
Fig. 5 was used to proceed varying amounts of 
data, to measure the necessary runtime. The 
procedure was repeated 500 times to ensure the 
statistical significance. The data variability is the 
result of the variation of the parameters �� and 
����. The measurement results are illustrated in 
Figure 9 confirming the linear dependence on 
amount of steering vectors �� and processing 
time. Figure 10 shows the measurement results 
for different FFT resolutions. The linear 
relationship between amount of frequency 
components and processing time can be 
confirmed by the measurements as well.  

The number of sensors have a linear influence 
on the processing time of the calculation as well 
since it defines the size of matrix ���. However, 
the high influence of (M³+M²) of the sensor count 
has been cancelled out by the parallelization of 
the matrix calculation. 

 

Fig. 9: Dependency between angle resolution and 
average processing time with trend line. 
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Fig. 10: Dependency between processing time and 
FFT resolution. 

Even in a numerical comparison of runtimes, the 
design has significantly accelerated the 
processing time to the pure software solution. 
Compared to the software solution in Table 1, 
the processing time has been reduced from 
~500 ms to ~4 ms. Even at four times higher 
resolution a processing time of ~15ms was 
achieved which is much faster than a standard 
embedded processor. For illustration, the used 
ARM processor has a frequency of 700 MHz and 
needs approximately 500 ms for calculation. This 
is equivalent to approx. 350 million clock cycles, 
to achieve the same processing time of 4 ms a 
processor with a frequency of 87,5 GHz has to 
be used. The explanation can be derived from 
the comparison of runtime estimations. For 

Software solution a runtime of  �(
����

�
��) ∙

�(�� + �� + �����) has been identified on the 

other hand a runtime of �(
����

�
(��� + 25 +

����)) for hardware solution have been 
achieved.  Comparing both results it is clear that 
the big factor of �(�� + �� + �����) has been 
reduced to �(�) reasoned by the parallelization 
of matrix calculation. Furthermore the calculation 
time of square root estimation has been 
canceled out reasoned by pipelining the root 
determination.  

In summary, the presented design is flexible in 
terms of angular granularity, scan region and 
FFT resolution. Only a change in the number of 
sensors has an effect on the FPGA design. 
Furthermore, the processing time scales linear to 
all depending parameters. 

Conclusion and Future Work 

This paper presented a novel approach to 
hardware acceleration of beamscan algorithms 
for localization of signal sources. The algorithm 
class was analyzed and calculation bottlenecks 
identified. Based on the analysis, a Hardware- 
Software Co-Design design was derived 
resolving the bottleneck. The design works in the 
frequency domain and is independent of the FFT 
resolution, the angle resolution, as well as the 
scan region. Only changes in sensor count leads 

to an adaption of the FPGA design. By the novel 
integrating of the FPGA into the localization 
system, the complexity of the system could be 
reduced leading to a linear scalability of all 
hardware resources and total runtime. 
Future work will deal with further reduction of 
DSP cores and optimization techniques to 
reduce the hardware resources. 
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