
	 The European Test and Telemetry Conference – ettc2018	 78

DOI 10.5162/ettc2018/4.1

Hardware Acceleration for Beamforming Algorithms based
on Optimized Hardware-/Software Partitioning

René Schmidt, Stephan Blokzyl, Wolfram Hardt,
Technische Universität Chemnitz, Straße der Nationen 62, D-09111 Chemnitz, Germany,

{rene.schmidt, stephan.blokzyl, wolfram.hardt}@informatik.tu-chemnitz.de

Abstract:

Beamforming techniques are widely used in many fields of research like sonar, radar, wireless
communication and speech processing applications. Beamforming algorithms are mainly used for signal
enhancement and direction of arrival estimation. In applications for tracking mobile communication
partners like speaker or aircrafts, beamforming algorithms are employed to estimate the direction of
arrival.

Beamforming processing is always accompanied by high computational costs, which are challenging for
embedded devices. Recent approaches process the calculation in frequency domain to reduce the
processing time. However, in many cases the processing is still very slow and cannot be used for real-
time processing. Alternative real-time solutions based on FPGAs face the drawback of long development
processes and restricted communication interfaces.

This paper introduces a novel implementation approach based on System on Chip (SoC) technology
with optimized Hardware-/Software Partitioning for real-time delay and sum beamforming. Basis for
evaluation is a runtime measurement of software implementations to determine computation steps with
high processing time and parallelization capabilities. Extracted computation steps are implemented on
an associated FPGA with full pipelined architecture for high data throughput and fast processing speed.
The complexity of the deduced architecture is evaluated regarding data length and data width with
respect to computational accuracy.

Key words: Beamforming, System on Chip, Hardware-/Software Partitioning, Parallelization

Introduction

Nowadays, beamforming algorithms are used in
numerous fields of applications. One field of
application is the data generation as it is done in
sonar systems to isolate ocean waveguide
information [1]. As another example, the
automotive industry uses beamforming
algorithm for data fusion approaches to merge
signals from distinct short range radar systems
[2]. However, a main application for
beamforming algorithms is signal quality
enhancement. On this account, beamforming
methods are used in wireless applications [3]
and RF designs [4] to enhance the signal quality.
Another field of application is spatial filtering
focusing on separation of mutually effecting
frequencies. In result the signal quality is
increased as well [5]. Furthermore, beamforming
algorithms are used in speech processing
applications to improve speaker signal quality
from a certain direction. In result, the signal
quality increases and suppressing unintended
influencing signals generated by sound sources
in different directions like background noises [6].

However, beamforming algorithms can be used
in opposite direction. The previous fields of
application mainly focused on signal
enhancement while another main application of
these algorithms is direction of arrival estimation
[7]. On basis of beamforming the direction of
arrival is identified and used for speaker
localization and tracking [8] or determining the
position of aircrafts [9]. For this applications
steered beamformers are used accompanied by
high computational effort challenging embedded
devices.

In the following, possible hardware acceleration
techniques for beamforming algorithms
determining the direction of arrival are analyzed
and advantages and disadvantages of the
distinct approaches are discussed. Basis for
further considerations is the analysis of runtime
and calculation complexity of a common delay
and sum (DAS) beamformer. For elucidation of
the theoretical values an exemplary
implementation of the beamformer is used. On
this basis, a novel System on Chip (SoC) design
will be derived. The novel approach will be

	 The European Test and Telemetry Conference – ettc2018	 79

DOI 10.5162/ettc2018/4.1

described in detail and evaluated with respect to
runtime and hardware utilization. Finally, the
results are presented and critically discussed in
conjunction with a summary of the paper and
possible improvements in future works.

Related Work

As previously mentioned, the main problem of
beamforming algorithms is the high
computational complexity. One possibility to
realize a beamforming algorithm for direction of
arrival estimation is the calculation in time
domain providing simple implementation effort,
but reducing the angle accuracy drastically. This
raises from the direct proportional dependency
of sampling rate �� and angle resolution
represented by following equation:

Δ� = ���
�∗� ���(�)

� � (1)

with Δ� representing amount of delayed samples,
intermediated sensor distance �, input angle �,
signal speed � and � ∈ {1,2, . . �} where M is the
amount of sensors. This implies the increasing of
accuracy can just be obtained by increasing the
sampling rate. For time domain calculation all
input signal are delayed by Δ� in respect to input
angle �� with � ∈ {1,2, . . �} where � represents
the measurement window size. In time domain
each sample of the measurement window
represent an angle according to equation (1)
(comp.Fig.1). Afterwards the delayed signals
according to �� are summed up. This procedure
is repeated for all N. The maximum amplitude of
the summed values represents the direction of
arrival. Considering the described computation a
calculation complexity of �(��) can be
identified.

Because of the high computational costs
accompanied by low accuracy the calculation is
transferred to frequency domain. In this context
the convolution in time domain is reduced to a
multiplication in frequency domain in conjunction
with less computational effort. Another benefit is
the representation of the time delay Δ as phase
shift in frequency domain defined as steering
vectors. In consequence an arbitrary angle
resolution can be achieved restricted by
computational power only. Therefore, the
calculation complexity in frequency domain
results in �(�� ∙ ����) where �� represents the
amount of angles with respect to angle resolution
and ���� represents the amount of frequency
components resulting of FFT usage and defining
FFT resolution.

The previously discussed arguments are
universally valid for beamforming algorithms.
However, in last decades numerous versions of
beamforming methods have been developed.
Each of this algorithms rely on additional non

trivial calculations effecting the calculation
complexity. One example is Minimum Variance
Distortionless Response (MVDR) beamformer
depending on an inverse calculation of � × �
matrix [10]. Another example is the Multiple
Signal Classification (MUSIC) beamformer
depending on calculation of eigenvalues of an
equal sized matrix [11].

∑

∆2

∆n

∆1

y(t)

x1(t)

x2(t)

xn(t)

Θ

Fig. 1: Standard beamformer with delay Δ and input
angle Θ.

Consequently, the transfer in frequency domain
alone is not sufficient to solve the computational
effort problem. On this account, the algorithms
has been realized on specialized Hardware like
Field Programmable Gate Arrays (FPGA) [12] or
Graphics Processing Units (GPUs) [13] beside
powerful PCs.

FPGA based realizations provide a high degree
of flexibility with regards to correlated
requirements as well as maximum parallelization
capabilities. Another big benefit of FPGA usage
is the low power consumption leading to a variety
of possible applications. On the contrary, FPGA
development is accompanied by long
development times reasoned by specialized
hardware implementation for the specific use
case. Furthermore, there is a reduction of
usability through additional specialized
interfaces for data transfer reducing the
throughput of FPGA designs.

On the other hand, GPUs have very high power
consumption, but offer high performance and
good parallelization characteristics with high
throughputs and high processing speed.

In summary, a normal PC is powerful and can
handle the specified algorithms in acceptable
computing time, but is not suitable for mobile use
due to the lack of mobility and high power
consumption. FPGAs have low power
consumption and high parallelization capabil-
ities, but facing the drawback of long
development times. GPUs, on the other hand,

	 The European Test and Telemetry Conference – ettc2018	 80

DOI 10.5162/ettc2018/4.1

have high power consumption but offer
enormous throughput and acceleration
possibilities.

A compromise between power consumption,
mobility and hardware acceleration is
represented by the SoCs from Xilinx and Altera.
The combination of ARM Processor and FPGA
provides high flexibility and parallelization
capabilities with low power consumption and
provides novel possibilities for hardware/
software partitioning due to standardized flexible
communication interfaces. For this reason, this
architecture provides a suitable basis for
accelerating beamforming algorithm for the
usage on embedded devises.

For identification of potential task for hardware
acceleration, the following chapter provides a
detailed description and run time analysis of a
standard beam scan algorithm represented by
the DAS beamformer.

Algorithmen Analysis

To analyze the most popular representative of
the beam scan algorithms, the DAS beamformer,
the input signal of the sensors is defined as
follows:

��(�) = ��(�) ∗ �(�) + ��(�) (2)

Where � represents the spatial response of
signal source � with addaptive gausian noise �
at time �. The beamformer output can be
represented as:

�(�) = ���(�) (3)

Where ω = [ω1, ω2,…,ωM] defines the weights of
the input channels and H is the Hermitian
transpose. Transforming the input signal �� to
frequency domain equation (2) has to be
rewritten as:

��(�) = ��(�)�(�) + ��(�) (4)

With �� representing the result of applying a
SFFT to the corresponding input signal ��.
Furthermore, � is the signal spectrum of signal
source � and noise spectra �. This leads to
beamformer output definition:

��(�) = ��(�)�(�) (5)

With spatial filter � describing the time delay of
equation (1) in frequency domain by a phase
shift with respect to input angle �.

The Delay and Sum Beamformer determines the
direction of arrival by successively scanning of
the power spectrum. Input angle � is defined by
the maximum magnitude of the power spectrum
defined by [14]:

�(�) = �
�

∑ |�(�)�| = ���(�)�(�)���
��� (6)

 = ������ (7)

Where ��� is the well-known covariance matrix
of input signal �(�) defined by ��� = �(�)�(�)�.
Spatial filter � represents the steering vectors
defined by [14]:

�(Θ) = �����(�, Θ)�, … , ����(�, Θ)�� = (8)

�
�
�
�

�

�

�
�
�
�

�

�

������

���

),()1(),2()1(),1()1(

),(),2(),1(

111

KMjMjMj

Kjjj

eee

eee

���

���

�

����

�

�

In this context, term ����(�,�) represents the
phase shift of input signal � with respect to input
angle �, frequency bin � and sensor �. On this
basis � has to be defined as:

�(�, Θ) = ���
��

� sin(Θ) (9)

Where � is the wavelength of frequency �. In
consequence the direction of arrival is described
by the maximum amplitude of equation (7):

������{�(Θ)} = ������{�(Θ)�����(Θ)} (10)

The described algorithm results in the process
flow depict in Fig. 2.

In
it

R
e

co
rd

 D
a

ta

S
F

F
T

C
a

lc
 R

x
x

C
a

lc
 P

o
w

e
r

G
e

t
M

a
x

Fig. 2: Process flow for Beamforming computation.

At begin of the process all constants are
determined including the steering vectors, since
they just depend on angle granularity and FFT
resolution. The “Init” process will be ignored in
the further analysis, since the initiation costs just
appear ones and effect the startup of the system
only. The second step is the acquisition of data
consisting of data sampling and copying in a
predefined buffer. The runtime has complexity of
�(�����) because every sample of the
measurement window has to be copied ones for
each input channel. Therefore, ���� is the length
of measurement window defining FFT length and
FFT resolution respectively. The following block
is SFFT describing short-time Fourier transform
of length ����. If ���� = 2� with � ∈ ℕ it can be
shown that the complexity of SFFT is
�(���� log(����)) and the accumulation for all
channels results in �(����� log(����)).
Afterwards, the calculation of the � × �
matrix ��� ∈ ℂ takes part. According to
definition of ��� = �(�)�(�)�, M² complex

	 The European Test and Telemetry Conference – ettc2018	 81

DOI 10.5162/ettc2018/4.1

values has to be determined. For the
determination of one component of matrix ��� M
complex multiplications and M-1 additions has to
be executed leading to a runtime complexity
of �(��) for one frequency component. The
process has to be repeated for each frequency
bin successively conducting in runtime

complexity of �(����
� ��). According to the

master theorem, if � ≪ ���� the complexity for
��� determination can be estimated by �(����).
The final power calculation from equation (7) is
realized in the subsequent “Calc. Power” block.
Therefore, the steering vectors given by
equation (8) are multiplied with the determined
matrix ��� to archive the power level
corresponding to input angle �. The computation
of equation (7) has to be repeated for each
possible input angle and for each frequency
component resulting in runtime complexity of

� �����
� ��� ∙ �(������). The computational

costs for ����� can be estimated by �(��). The
result of this matrix multiplication is a vector of
length M which has to be multiplied by the
steering vector as well. In consequent, the vector
multiplication has to be estimated by �(��).
Subsequently, the absolute value of the result
has to be determined. The calculation is
accompanied by two multiplications for square
computation, one addition and one square root

determination resulting in �(3�� log ��
��(���∗��))

with �� defining number of bits [15]. In
consequence the total runtime complexity is

�(����
� ��) ∙ (�(�� + �� + 3�� log ��

��(���∗��)).

Following the master theorem the complexity
can be reduced to �(������).The last task is the
maximum detection with a trivial runtime of
�(��).
For clarification of the theoretical time
estimation, the system has been implemented
on a Cortex A9 ARM Processor with the purpose
to measure the time for each described task. For
evaluation a FFT resolution of 1024, an angle
granularity of one degree and three input
sensors have been chosen. The results are
depict in Tab.1.

Tab. 1: Results of runtime measurement for DAS with
3 Sensoren, NFFT 1024 und NA 180 implemented on
ARM Cortex A9 Prozessor.

Task Complexity Time (ms)

Record Data �(�����) 1,313

SFFT �(���� log(����)) 1,668

Calc Rxx �(����
2 ��)

5,124

Calc Power �(������) 533,181

The results show that the runtime of �(������)
in combination with the expensive constant costs
for square root calculation effecting the overall
runtime massively. In consequence the
theoretical consideration and the exemplary time
measurement identifying the power calculation
as bottleneck in the localization process.

The following chapter describes a novel
approach for hardware acceleration bases on
SoC Architecture with the aim of dissolving the
bottleneck.

System on Chip Architecture

To handle the identified bottleneck a Xilinx Zynq
SoC is used. The SoC combines a Cortex A9
ARM Processor and FPGA with the standardized
AXI-Interface as communication medium. The
Aim of the design is to use the parallelization
capabilities of the FPGA to dissolve the
bottleneck and improve the throughput of the
power calculation but also keep the most
possible flexibility to compensate the FPGA
development costs.

A localization system bases on beamforming
algorithms usually depends on the amount of
sensors M, the scanning region defined by angle
range, the granularity of the angles resulting in
number of steering vectors �� and length of
measurement window ���� given by FFT
resolution. To ensure the greatest possible
flexibility and reusability of the FPGA design, the
realization should be independent from this
parameters as fare as possible.

By considering equation (7) and the
corresponding runtime complexity it is clear that
all this parameters influencing the calculation.
The amount of angles and angle granularity are
indirectly given by the amount of steering
vectors. The steering vectors depend on the
frequency components and possible input
angles only whereby a calculation in the
initialization phase is sufficient. On the other
hand, the calculation of ��� has to be adapted
with each measurement window. Nevertheless,
the amount of steering vectors has a huge
memory complexity since there is one complex
steering vector for each frequency component,
input angle and sensor. This leads to a memory

usage of �(����
� ���) which represent a big

challenge for FPGAs and the limited Block RAM
resources to store all steering vectors initially.
For this reason, the steering vectors has to be
transferred from the DDR RAM separately.

On this account, the task of the process flow
depict in Fig.2 are mapped to the software part
until task “Calc Rxx”, the other tasks are mapped
to the hardware part connected by DMA
controller and AXI-Lite interface. The resulting

	 The European Test and Telemetry Conference – ettc2018	 82

DOI 10.5162/ettc2018/4.1

system architecture is show in Fig.3. The
maximum detection has been moved to the
hardware part to reduce communication costs.
After power calculation �� values have been
generated and have to be transferred to the
software by a DMA Controller with subsequently
maximum detection. However, usually just the
direction of arrival is needed which is
represented by one angle with maximum
magnitude. Based on this just one angle need to
be transferred if the maximum detection is
realized on hardware.

In
it

R
e
c
o

rd
D

a
ta

S
F

F
T

C
a
lc

R
x
x

C
a
lc

P
o

w
e
r

G
e
t

M
a
x

SW

HW

D
M

A
C

o
n

tr
o

ll
e
r

R
e
a
d

M
a
x

A
X

I-
L

it
e

Fig. 3: System architecture with HW-/SW-Partitioning.

Since a huge amount of data has to be
transferred between processor and FPGA a
DMA controller is used to transfer all necessary
data from DDR RAM to FPGA by direct memory
access sequentially. Reversely, an AXI-Lite
interface is used, since it provides less hardware
utilization and simple usability for transferring
low amount of data. After finishing the calculation
process, the angel indicating the direction of
arrival has to be transferred only, reasoning the
usage of AXI-Lite interface. Additionally the AXI-
Lite interface acts as configuration interface as
well.

Reviewing equation (7) in detail it is evident, that
the matrix multiplication can be divided in three
parallel vector multiplications. This vector
multiplications can be efficiently implemented
with shift registers. The following vector
multiplication proceeds in parallel with one clock
cycle delay (see Fig.4).

Fig. 4: Schematic power calculation of equation (7)
with parallel vector multiplication (gray) for M=3.

This calculation has to be carried out �� times
without changes of the ��� values. For this
reason, the values for ��� are transmitted once
for each frequency component to subsequently

stream the steering vectors through the
calculation architecture. This approach has been
realized in the following FPGA design depict in
Fig. 5.

Steering

Vector FIFOs

Complex

Multiplier

Complex

Multiplier

Complex

Multiplier

Complex

SUM

Complex

SUM

Complex

SUM

RXX Storage

Complex

Multiplier

Complex

Multiplier

Complex

Multiplier

∆

complex

SUM

Calc

Square

Calc

Square

SQRT

+

MAX DET

+ BRAM

L1

L2

L3

L4

L5

L6

L7

L8

Fig. 5: Block diagram of FPGA Design for parallel
computation of equation (7) with maximum detection
for M=3. Calculation instances are displayed dark gray
routing and storing instances light gray divided in
computation level L1 to L8.

The data are transmitted to the FPGA by a
simple streaming protocol, whereas the first M²
data are identified as ��� entries. The ��� entries
are stored in RXX Storage. All other incoming
data are steering vectors which are stored in M
separated FIFOs. The FIFOs representing one
row of the matrix depict in equation (8). For

	 The European Test and Telemetry Conference – ettc2018	 83

DOI 10.5162/ettc2018/4.1

communication reduction the first row is not
transmitted since it is constant one. The DMA
Controller supports 32bit and 64 bit interfaces.
For this implementation, 64bits are used which is
logical divided in two 32bit values. The two
values representing the real and imaginary part
of one complex number. For this reason an
arbitrary amount of sensors can be supported
since they can be identified by a simple modulo
calculation.

After the ��� values and the steering vectors
have been transferred, the data according to
formula (7) and the schematically represented
calculation in Fig.4 are transferred into the
calculation architecture by a multiplexer.

The first level of the calculation architecture (L1)
is formed by M complex multipliers, which as the
name implies, realizes a multiplication of
complex numbers. To reduce the number of DSP
cores, which are used to perform the
multiplications, the calculation is realized as
follows:

z1 = (a + bi) z2 = (c + di)

�(�1 ∙ �2) = �� − �� (11)

�(�1 ∙ �2) = (� + �)(� + �) − �� − �� (12)

The advantage over the traditional variant is the
reduction of four multiplications to three
multiplications leading to a reduction of M DSP
cores per calculation level. The resulting
calculation tree is depict in Fig.6.

a*c b*d a+b c+d

- *

-

Real Imag

b*da*c

Fig. 6: computation flow for complex multiplication for
�1 ∙ �2.

The realization requires three clocks for one
complex multiplication until the result is obtained,
but offers a full pipelined structure with maximum
throughput.

The multiplexer passes the corresponding matrix
components from Fig. 4 one after the other to the
complex multipliers. The multiplication results
are transferred to level 2 (L2). In L2 the
summation of the intermediate results takes
place ending the parallel matrix calculation
shown in Fig.4. The result of L2 is the row vector
(x1, x2, x3) in Fig. 4. In L3 the multiplication of row
vector x and steering vector takes place. For this
reason the incoming steering vectors are

delayed in such way so that they are present at
the appropriate time at L3. The resulting
summands are summed in level 4 leading to the
sum representing the complex value of P(Θ). In
L5 the square of the real and imaginary part
transferred from L4 is calculated summed and
forwarded to L6 for square root determination.
For square root computation the Cordic-IP core
is used, provided by the vendor. Result of L6 is
the power value of the dedicated frequency
component at input angle Θ. Since the results
must be added over all frequency components,
each value is stored in a BRAM. In each
subsequent iteration the values are read and
summed up in parallel. For this purpose, the
number of angles �� must be transferred once
during the initialization phase via AXI-Lite
interface. In the last step, the maximum is
determined by storing the current maximum and
the associated angle index for each iteration,
which can be accessed via the AXI-Lite interface
after completion of the calculation.

To determine the latency of the system, the
respective latencies of the described blocks
have to be added for each processing level. The
multiplication in L1 and L3 requires three clock
cycles while the summation in L2 and L4 takes
one clock cycle only. Squaring the real and
imaginary part in L5 is calculated in one clock
cycle the subsequent summation requires one
additional cycle. The calculation of the square
root is more complex and requires 13 clock
cycles until the result is available. The
summation in L7 and the determination of the
maximum in L8 are processed in one cycle
respectively. In summery the latency of the
design results in 25 clock cycles. The
determination of the total runtime is given by the
behavioral description of the system. To
determine one power value, �� steering vectors
must be shifted through the calculation
architecture. All �� steering vector have to be
active for M clock cycles since all M components
of matrix ��� have to be shifted through the
complex multipliers. This results in a runtime of
��� + 25 clock cycles for one maximum
determination of a frequency component. The

process has to be repeated
����

�
 times for each

frequency component. The total runtime results

in
����

�
(��� + 25 + ����) with ���� defining the

communication time for transferring the steering
vectors from DDR RAM to FPGA. ���� can be
estimated by �� clock cycles, but includes
additional communication costs for DMA
controller processing leading to inaccuracies in
the estimated total runtime. The conversion from
clock cycles to time units depends on the
individual configured FPGA base frequency.

	 The European Test and Telemetry Conference – ettc2018	 84

DOI 10.5162/ettc2018/4.1

The correctness of the design has been verified
by simultaneous simulations in Matlab and
Vivado simulator.

Results

For evaluation purpose of the design
architecture, the design has been implemented
on a Zynq ZedBoard according to Fig.3.
Correspondingly, the data acquisition, the
determination of the SFFT and the calculation of
the ��� matrix were implemented in software. On
hardware the power computation and maximum
detection have been realized with FPGA base
frequency of 100 MHz.

Reviewing, the FPGA design from Fig. 5 is
independent of the number of steering vectors,
the definition of the steering vectors and the
resolution of the FFT. However, the design
architecture still depends on amount of sensors
M since each column in Fig.5, at level 1 to 3,
represents one Sensor. For the usage of M
sensors M complex multiplier and M summations
have to be implemented in L1 to L3 influencing
the resource utilization massively. The following
figure depicts the used Look Up Tables (LUT)
and Flip Flops (FF) in respect to the amount of
sensors.

Fig. 7: Resource utilization of FFs and LUTs in
dependency of used Sensors and linear trend (light
and dark gray lines).

It can be observed that a linear correspondence
between resources and amount of sensors has
been achieved. This can be explained by the
linear relationship between the number of
sensors and the required complex multiplier and
summations. An additional observation is the
constant relation between amount of LUTs and
FFs, furthermore the amount of resources is
almost equal.

For the realization of the multipliers DSP cores
are used. The usage of the DSP cores
depending on amount of sensors is shown in
Figure 8. For the same reasons, a linear trend is
identified for DSP usage. However, the number
of DSP cores is twice as high as instantiated
multipliers reasoned by DSP core input vector
width. The calculation bases on the multiplication

of 32 bit values while the DSP cores supporting
a 25bit multiplication only. During synthesis, this
is resolved by using 2 DSP cores reasoning the
higher utilization.

Fig. 8: Amount of used DSP Cores in dependency of
used Sensors and linear Trend.

The parameters �� and ���� have no influence
on the hardware resources, but determining the
overall processing time mainly. As derived in the
previous chapter, a linear dependency of the

runtime
����

�
(��� + 25 + ����) is expected. To

evaluate the processing time, the design from
Fig. 5 was used to proceed varying amounts of
data, to measure the necessary runtime. The
procedure was repeated 500 times to ensure the
statistical significance. The data variability is the
result of the variation of the parameters �� and
����. The measurement results are illustrated in
Figure 9 confirming the linear dependence on
amount of steering vectors �� and processing
time. Figure 10 shows the measurement results
for different FFT resolutions. The linear
relationship between amount of frequency
components and processing time can be
confirmed by the measurements as well.

The number of sensors have a linear influence
on the processing time of the calculation as well
since it defines the size of matrix ���. However,
the high influence of (M³+M²) of the sensor count
has been cancelled out by the parallelization of
the matrix calculation.

Fig. 9: Dependency between angle resolution and
average processing time with trend line.

0

2

4

6

8

10

12

14

16

2 3 4 5 6 7 8 9 10 11 12 13 14

A
m

o
u
n
t

o
f
R

e
s
o
u
rc

e
s
 i
n
 1

0
³

Amount of Sensors

LUT FF Trend LUT Trend FF

0

50

100

150

200

250

2 3 4 5 6 7 8 9 10 11 12 13 14

A
m

o
u
n
t

o
f
D

S
P

 C
o

re
s

Amount of Sensors

DSP Trend DSP

0

2

4

6

8

10

12

90 180 270 360 450 540

T
im

e
 in

 m
s

Amount of Steering Vektors

Average Calculation Time

Trend Calculation Time

	 The European Test and Telemetry Conference – ettc2018	 85

DOI 10.5162/ettc2018/4.1

Fig. 10: Dependency between processing time and
FFT resolution.

Even in a numerical comparison of runtimes, the
design has significantly accelerated the
processing time to the pure software solution.
Compared to the software solution in Table 1,
the processing time has been reduced from
~500 ms to ~4 ms. Even at four times higher
resolution a processing time of ~15ms was
achieved which is much faster than a standard
embedded processor. For illustration, the used
ARM processor has a frequency of 700 MHz and
needs approximately 500 ms for calculation. This
is equivalent to approx. 350 million clock cycles,
to achieve the same processing time of 4 ms a
processor with a frequency of 87,5 GHz has to
be used. The explanation can be derived from
the comparison of runtime estimations. For

Software solution a runtime of �(
����

�
��) ∙

�(�� + �� + �����) has been identified on the

other hand a runtime of �(
����

�
(��� + 25 +

����)) for hardware solution have been
achieved. Comparing both results it is clear that
the big factor of �(�� + �� + �����) has been
reduced to �(�) reasoned by the parallelization
of matrix calculation. Furthermore the calculation
time of square root estimation has been
canceled out reasoned by pipelining the root
determination.

In summary, the presented design is flexible in
terms of angular granularity, scan region and
FFT resolution. Only a change in the number of
sensors has an effect on the FPGA design.
Furthermore, the processing time scales linear to
all depending parameters.

Conclusion and Future Work

This paper presented a novel approach to
hardware acceleration of beamscan algorithms
for localization of signal sources. The algorithm
class was analyzed and calculation bottlenecks
identified. Based on the analysis, a Hardware-
Software Co-Design design was derived
resolving the bottleneck. The design works in the
frequency domain and is independent of the FFT
resolution, the angle resolution, as well as the
scan region. Only changes in sensor count leads

to an adaption of the FPGA design. By the novel
integrating of the FPGA into the localization
system, the complexity of the system could be
reduced leading to a linear scalability of all
hardware resources and total runtime.
Future work will deal with further reduction of
DSP cores and optimization techniques to
reduce the hardware resources.

Acknowledgment

The authors gratefully acknowledge funding by
the DFG (GRK 1780/1).

References

[1] G.E. Allen, B.L. Evans, Real-time sonar
beamforming on workstations using process
networks and POSIX threads, IEEE Transactions
on Signal Processing 48.3, 921-926 (2000); doi:
10.1109/78.824694

[2] K. Schuler, et al, Array design for automotive
digital beamforming radar system, Radar
Conference, 2005 IEEE International. IEEE,
2005; doi: 10.1109/RADAR.2005.1435864

[3] J. Litva, and T. K. Lo, Digital beamforming in
wireless communications. Artech House, Inc.,
1996. ISBN:0890067120

[4] R. Kohno, Spatial and temporal communication
theory using adaptive antenna array, IEEE
personal communications 5.1: 28-35 (1998); doi:
10.1109/98.656157

[5] B. D. Van Veen, K. M. Buckley, Beamforming: A
versatile approach to spatial filtering, IEEE assp
magazine 5.2,4-24 (1988); doi: 10.1109/53.665

[6] J.-M. Valin and et al., Robust sound source
localization using a microphone array on a mobile
robot, Intelligent Robots and Systems,
2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ
International Conference on, vol. 2. IEEE, 1228–
1233 (2003); doi: 10.1109/IROS.2003.1248813

[7] V. Krishnaveni, T. Kesavamurthy, and B. Aparna,
Beamforming for direction-of-arrival (doa)
estimation-a survey, International Journal of
Computer Applications, vol. 61, no. 11, 2013; doi:
10.5120/9970-4758

[8] I. Markovi´c, et al., Speaker localization and
tracking with a microphone array on a mobile
robot using von Mises distribution and particle
filtering, Robotics and Autonomous Systems, vol.
58, no. 11, pp. 1185–1196 (2010); doi:
/10.1016/j.robot.2010.08.001

[9] U. Michel, History of acoustic beamforming, 1st.
Berlin Beamforming Conference. 2006.

[10] J. Capon, High-resolution frequency-wavenumber
spectrum analysis, Proceedings of the IEEE,
1408-1418 (1969); doi:
10.1109/PROC.1969.7278

[11] R. Schmidt, Multiple emitter location and signal
parameter estimation, IEEE transactions on
antennas and propagation, 276-280 (1986); doi:
10.1109/TAP.1986.1143830

0

5

10

15

20

512 1024 2048 4096

T
im

e
 in

 m
s

FFT Size

Average Calculation Time

	 The European Test and Telemetry Conference – ettc2018	 86

DOI 10.5162/ettc2018/4.1

[12] A. Ahmedsaid, A. Amira, and A. Bouridane,
Accelerating MUSIC method on reconfigurable
hardware for source localization, Circuits and
Systems, 2004. ISCAS'04. Proceedings of the
2004 International Symposium on. Vol. 3, IEEE,
2004; doi: 10.1109/ISCAS.2004.1328760

[13] V. P. Minotto, et al., GPU-based approaches for
real-time sound source localization using the
SRP-PHAT algorithm, The International Journal
of High Performance Computing
Applications,291-306 (2013); doi:
10.1177/1094342012452166

[14] S. N. Bhuiya, F. Islam, M. A. Matin, Analysis of
Direction of arrival techniques using uniform
linear array, International Journal of Computer
Theory and Engineering, 931 (2012).

[15] M. Fürer. Faster integer multiplication. SIAM
Journal on Computing, 979-1005 (2009); doi:
10.1137/070711761

	1. Sensors
	1.1
	1.4
	1.7

	2. Modulation & Coding
	2.1
	2.2
	2.3
	2.4

	3. Data Management Standards
	3.1
	3.2
	3.3

	4. RF Design
	4.1
	4.2
	4.3

	5. Time-Space position technoligies
	5.1
	5.2
	5.3

	6. Network & Architectures
	6.1
	6.2

	7. AIM 2018
	7.1
	7.2
	7.3
	7.4

	8. Spectrum Efficiency
	8.1
	8.2
	8.3
	8.4

	9. Data Acquision
	9.1
	9.2
	9.3
	9.4
	9.5

	10. Imaging & Video
	10.1
	10.2
	10.3
	10.4
	10.5

	11. Network & Data acquisition
	11.1
	11.2
	11.3
	11.4
	11.5
	11.6

	12. Data Management Applications
	12.1
	12.2
	12.3
	12.4
	12.5

