
 The European Test and Telemetry Conference – ettc2018 71

DOI 10.5162/ettc2018/3.3

A JSON transactional data server for flight tests

A. Óscar Gigato Rodríguez

1

1
 Airbus Defence and Space Sevilla-SPAIN

oscar.gigato@airbus.com

Abstract:

Airbus Defence and Space has been using a protocol for gathering Flight Tests data, called FxS
(Flight Test Data Exchange Service), based on XML and transactions among clients and servers. An
evolution of this protocol is proposed, covering current implementation desired characteristics, like
being object-oriented, metadata support, encryption and/or compression, and based on JSON
instead of XML (more lightweight).

Key words: object-oriented, JSON, encryption, metadata, compression.

Introduction

In Airbus Defence and Space we use a
client/server model for gathering data from a
Flight Test, because of its tremendous
advantages, such as centralized store of data,
ease of backup’s processes, access control and
so. Since beginning of 2000’s, we have been
developing a protocol called FxS (Flight Tests
Data Exchange Service), in order to use the
same layer for access different data formats
stored on heterogeneous systems.

After more than 15 years after entry into
production of FxS data servers, we think that
it’s time to an evolution of this concept, keeping
the good ideas, and introducing some new
technologies, in order to fix a few drawbacks
detected during this period, so we can
maximize performance and reliability of our
systems, and give the best possible service to
our users.

In general lines, we can proudly say that FxS
data servers works very well and stable, but we
want to polish it even more.

A bit of history

Before the developing of FxS, access to data
from flight tests was performed using
proprietary applications developed in-house,
with direct access to data. That is, tools used by
analysis team had to have visibility of stored
data, with no intermediary. And each ground
station had its own suite of applications, being
incompatible among them.

In this situation, former CASA and DASA
ground stations teams met and agreed the
development of a new interoperable protocol,
so that an engineer of one team can connect to
data of the other team without problems. Then
FxS was born. The key of this concept was to
create a new layer over stored data, and
harmonize the way data is accessed by both
ground stations teams.

The concept of „Data server“

With the development of FxS, data server
architecture was also deployed. Instead of
access data directly, so that each client had to
have visibility of stored data, from now on, a
new actor enters into scene. The data server is
the only application that has access to all data
repository, and clients have to connect with it, if
they want to gather stored data.

 The European Test and Telemetry Conference – ettc2018 72

DOI 10.5162/ettc2018/3.3

Fig.1: Data server architecture.

Among the multiples advantages of this
philosophy, we have:

- Permissions management is now
centralized on data server itself. This
simplifies this task enormously.

- Clients only need to “speak” FxS. It
permits access to different formats of
data, in different systems.

- Clients read only the data they need.
They have no longer to access all the
data for gathering, for example, 4
parameters. The data server have
access to all test, but only delivers
required parameters, at the required
rate during the required period of time.
This saves enormous bandwidth and
time.

- Some data of flight tests have been
recorded in “raw format”, and need to
be converted to engineering format.
This is called “calibration”. Before data
server deployment, calibrated
parameters can be either directly stored
in calibrated units, or having to be

calculated by clients. Now, it is normally
the data server who performed these
calculations.

- Use of this architecture permits to be
independent from Operating System
and hardware. Clients only have to
know the FxS protocol. No more.

However, during all this time, we have detected
some lacks or drawbacks that have to be fixed:

- Use of metadata is mandatory. In some
situations, we have to reserve some
valid values to indicate that data is not
valid, for example. Metadata shall avoid
this problem.

- Full support of strings. Actually, we
need to make some workarounds in
order to use strings.

- Opaque parameters native support.
Sometimes, data recorded in one
parameter is the traffic from one data
bus, and thus it does not have a fixed
size.

- In offline mode, use of only one socket
will simplify passing through a firewall.

- Compression and/or encryption is also
desirable when using offline data server
from a remote location.

- User identification can be stronger.

Today: The FxS protocol

FxS (Flight Test Data Exchange Service)
protocol is based on XML transactions among
server and clients. All messages are validated
before processed, using XML schemas. This
makes all transactions consistent, and prevents
use of messages that don’t fully respect FxS
specification.

The following transactions are defined:

- Status Announcement.

- Client Identification.

- Special parameter.

- Data File List.

- Data File Info.

- Parameter List.

- Tag-Size List.

- Program/Setup.

- Offline Test.

- Start.

- Stop/Close.

 The European Test and Telemetry Conference – ettc2018 73

DOI 10.5162/ettc2018/3.3

- Pause.

- Resume.

- Remove.

- Rate.

- Refresh.

Current data server uses two channels with the
client. The first one, TCP, is reserved for
transactions, and the second one, UDP unicast
or multicast, is reserved for data transmission.

Introducing a new data server architecture

Keeping in mind all the advantages of FxS data
server, I propose a new (evolutionary)
architecture for the data server. It tries to
overcome all the drawbacks of current software,
as well as maximize both speed and network
bandwidth efficiency. It also tries to simplify
both transactions and connections
management. The way it addresses these
points is:

- Use of JSON instead of XML (lighter
messages, faster transactions
generation).

- Use of only one TCP port in OFFLINE
mode (it eases tunnel traffic forwarding
for use behind a firewall).

- In ONLINE mode, it uses an UDP
connection for data, just like the current
data server. But this connection is
made by the client to the server (in
current data server, is the server who
opens this port). This avoids some
problems with local firewalls (in client
equipment).

- Use of compression is supported in
OFFLINE mode. Although LZMA2 is
recommended, there is no obligation to
use that one.

- Redesign some transactions.

- Permit the use of TTD and CVT data in
the same connection (current data
server needs two different connections
for this purpose).

- Things that work quite well will be
maintained, like XML use for
configuration files. In this case, XML
files are more readable for a human,
hence this decision.

- Time for samples sent by data server
will be in PTP time format, an 8 byte
time specifications who allows
precisions of nanoseconds, while
specifying the year too.

The JSON Data Interchange Syntax

JSON (JavaScript Object Notation) is a
lightweight, text based, independent syntax for
defining data interchange formats[1]. Is like
XML, but simpler and lighter. It is harder to read
for a human, but in this case, these messages
will not be read by persons. It is also faster to
parse and generate, and there are too many
libraries in many programming languages that
support this standard. Possibility of validation
(just like XML schemas) exists, as there is a
draft of a standard for validation.

An example comparing XML and JSON:

Fig.2 A sample JSON definition.[2]

 The European Test and Telemetry Conference – ettc2018 74

DOI 10.5162/ettc2018/3.3

Fig.3 A sample XML definition.[2]

As shown in previous figures, for the same
definition JSON uses less character, thus
making it faster for transmitting it over the
network. Clearly XML is powerful than JSON,
but in our case, is enough with JSON, and so
we can worth its advantages over XML.

Transactions for the new data server

Some of the transactions defined in the new
data server will be redesigned. One of them
disappears, while a new one is created.
Transactions contents might vary in its final
implementation.

Tab 1 Comparison between transactions.

FxS
Transaction

New transaction

Status
Announcement

Status
Announcement

Client
Identification

Client
Identification

Special
Parameter

-

- Connection
Options

Data File List Tests List

Data File Info Test Info

Parameter List Parameter List

Tag-Size List -

Program/Setup Program

Offline Test Offline Test

Start Start/Retrieve

Stop/Close Stop/Close

Pause Pause

Resume Resume

Remove Edit Parameter
List

Rate Modify Rate

Refresh Refresh

There is something more than a change of
names. Special Parameter has no sense since
now we have metadata sent associated to
parameters values. Let’s explain these
transactions:

- Status Announcement: This one does
not change. Data server sends, each
second, a broadcast message for
announcing itself.

- Client Identification: This transaction
identifies the client in the data server. It
is useful for both audit and access
control purposes.

- Connection Options: Used for
negotiating connections aspects, like
compression (only for OFFLINE), local
UDP port for ONLINE mode, etc.

- Tests List: In OFFLINE mode, this
transaction returns the list of available
tests, according with access
permissions of the user.

- Parameter List: The client asks the
server for the list of parameters using
this transaction. Regular expressions
can be used.

- Program: This transaction tells the
server the list of parameters that have
to be sent to the client. It also specifies
each parameter mode (CVT, TTD), and
rate (only for CVT).

- Offline Test: Specifies the server the
test to work with, and the time span to
be used (within test time limits).

- Start (ONLINE)/Retrieve (OFFLINE):
Makes the data server start sending the
data to the client.

- Stop (ONLINE)/Close (OFFLINE):
Makes the data server stopping the
data transmission. After data stop,
connection with the client is closed.

- Pause: Pauses data sending.

- Resume: Resumes data sending.

- Modify Rate: Changes the rate for one
or more parameters (CVT mode).

- Refresh: Forces the send of last value
for all programmed parameters, in CVT
mode. Normally, only changed values
are sent.

Transfer of data

Due to the great amount of data that can be
transmitted over the network, binary connection
is the most efficient one. We define two
different frames, although in the same channel,
for both CVT and TTD modes. This allows the
use of these two modes in the same
connection. In OFFLINE mode, only one port is
used by each client, for both transactions and

 The European Test and Telemetry Conference – ettc2018 75

DOI 10.5162/ettc2018/3.3

data connection. Each message specifies the
type of information before the payload. That is,
for a transaction, a TRANSACTION identifier is
prepended. For data, a DATA identifier is also
prepended. All information is sent in a TCP
connection. Here is the frame definition, for
both CVT and TTD modes.

Tab. 2: CVT DATA frame definition

 SIZE (IN
BYTES)

DESCRIPTION

FRAME TYPE 1
VALUES:

TRANSACTION,
DATA, STATUS

FRAME SIZE
(IN BYTES)

2 -

CURRENT
TIME

8 PTP TIME

NUMBER OF
PARAMETERS

2
NUMBER OF
TAG/VALUE

PAIRS

TAG 0 4
FIRST TAG

SENT

METADATA 0 1
FIRST VALUE
METADATA

SIZE 0
(OPTIONAL)

2
SIZE OF FIRST

VALUE

VALUE 0 VARIABLE
FIRST VALUE

SENT

… … …

TAG N-1 4
LAST TAG

SENT

METADATA N-
1

1
LAST VALUE
METADATA

SIZE N-1
(OPTIONAL)

2
SIZE OF LAST

VALUE

VALUE N-1 VARIABLE
LAST VALUE

SENT

Tab. 3: TTD DATA frame definition

 SIZE (IN
BYTES)

DESCRIPTION

FRAME TYPE 1

POSSIBLE
VALUES:

TRANSACTION,
DATA, STATUS

FRAME SIZE
(IN BYTES)

2 -

CURRENT
BASE TIME

8 PTP TIME

TAG 0 4
FIRST TAG

SENT

DELAY 0 2
DELAY OVER

BASE TIME (ns)

SIZE 0 2
SIZE OF
VALUE 0

METADATA 0 1
FIRST VALUE
METADATA

VALUE 0 VARIABLE
FIRST VALUE

SENT

… … …

TAG N-1 4
LAST TAG

SENT

DELAY N-1 2
DELAY OVER

BASE TIME (ns)

SIZE N-1 2
SIZE OF LAST

VALUE

METADATA N-
1

1
LAST VALUE
METADATA

VALUE N-1 VARIABLE
LAST VALUE

SENT

When sending transactional data, first byte
indicates that it is a transaction, next two bytes
gives frame length, and just after this
information, JSON serialized message is
appended.

The only difference between ONLINE and
OFFLINE frames, is that the first one does not
use TRANSACTION type of frames.

There are two aspects that I want to
emphasize:

- Strings and variable size data are
permitted. When necessary (in CVT
mode), a size field will be used. The
existence of this filed can be checked in
metadata.

- Metadata includes some flags, like
Valid Data Flag, No Data Flag, Size
field present flag, etc.

ONLINE (real time) mode

We must say “quasi real time” mode, so we are
using neither a real time device nor Operating
System. In this mode, we use two connections
per client. The first one, TCP, will transmit
transactions between client and server. And a
second one, UDP, will be used to send data.

 The European Test and Telemetry Conference – ettc2018 76

DOI 10.5162/ettc2018/3.3

This is due to TCP connections are designed
for reliability, but not for quick response. In
order to avoid problems with local firewalls,
both connections will be open by the client.

As this mode will be used mainly in local area
networks, compression algorithms shall not be
provided.

Once the client sends the Start transaction,
data server begins sending programmed data
at the desired rate. Only the data that has
changed since the last data sent is delivered.
This saves both bandwidth and CPU resources
in client and server.

If the client wants the server to send all
parameters values, it can send a Refresh
transaction to the server. Upon the reception of
this message, the server delivers last acquired
parameters values.

Client can also pause and resume data
delivering to itself, by sending both Pause and
Resume transactions.

During the receiving of data from the data
server, client can send an Edit Parameter List
transaction, adding/deleting parameters to
program. Upon the receipt of this transaction,
data server will refresh all data to his client.

Once the client no longer needs data from the
server, it sends a Stop transaction, making it to
finish data sending, and the subsequent close
of connection.

OFFLINE (processed) mode

In this mode, clients will require previously
stored and processed data for its study by
specialists. As we can be connected from both
LANs and remote locations (remote location
means other center, for example), only one
TCP port will be used. This eases port
forwarding over a SSH tunnel, for example.

In addition to this, compression can be enabled
using the Connection Options transaction.

The usual lifecycle for OFFLINE data servers
starts receiving a Client Identification
transaction from one client, then a Connection
Options one. After this, normally a Test List
Request is made, and then a Parameter List
can be made (is optional). Next step is an
Offline Test Request, specifying test and time
slices required, followed by a Program request.

Once the client sends the Start transaction, the
server will send it all required data, at the
fastest speed permitted by both client and
server.

Like in ONLINE mode, when a Stop transaction
is sent, data server will close its connection to
the client.

Frame Type field is used to distinguish among
TRANSACTIONS, DATA or STATUS
messages.

Future: SSH tunneling and Web Services

Tunneling over a SSH connection could be
made by OFFLINE data server. This approach
is useful for encrypting data and facilitates its
pass through a firewall. Moreover, this tunnel
can also provide compression, avoiding the use
of it directly in the protocol.

Fig. 4 An example of a SSH tunnel.

A Web Service is a technology that enables
interchange of information between two
applications, using WEB standards. The client
is normally run inside a web browser, which
eases enormously deployment of client
applications (every computer has a browser
installed), security restrictions and so on.

Technologies like SOAP, JSON, AJAX, REST
and others are used in web services.

The idea is to embed data server functionality
into a web service, adapting the way it works to
offer its services and make them accessible
from web clients.

Making a data server operate as a web service
opens a world of interoperable services, and
the possibility of development of thin clients,
that can be run from a laptop to a smartphone
or tablet. For example, a light client for checking
live parameters could be easily deployed in a
tablet, or opened from a web browser. This
would allow us checking parameters inside an
aircraft in real time, from any place of it.

Today it’s possible to implement this scenario,
but web services make rather simple deploying
clients in any site. Firewalls are not a problem
using this approach.

Among drawbacks of using a web service, the
main one could be performance loss, due to
overhead created by HTTP/SOAP layers to
transmit data to the clients.

 The European Test and Telemetry Conference – ettc2018 77

DOI 10.5162/ettc2018/3.3

References

[1] http://www.ecma-
international.org/publications/files/ECMA-
ST/ECMA-404.pdf

[2] Wikipedia: https://en.wikipedia.org/wiki/JSON

	1. Sensors
	1.1
	1.4
	1.7

	2. Modulation & Coding
	2.1
	2.2
	2.3
	2.4

	3. Data Management Standards
	3.1
	3.2
	3.3

	4. RF Design
	4.1
	4.2
	4.3

	5. Time-Space position technoligies
	5.1
	5.2
	5.3

	6. Network & Architectures
	6.1
	6.2

	7. AIM 2018
	7.1
	7.2
	7.3
	7.4

	8. Spectrum Efficiency
	8.1
	8.2
	8.3
	8.4

	9. Data Acquision
	9.1
	9.2
	9.3
	9.4
	9.5

	10. Imaging & Video
	10.1
	10.2
	10.3
	10.4
	10.5

	11. Network & Data acquisition
	11.1
	11.2
	11.3
	11.4
	11.5
	11.6

	12. Data Management Applications
	12.1
	12.2
	12.3
	12.4
	12.5

