
 The European Test and Telemetry Conference – ettc2018 185

DOI 10.5162/ettc2018/9.2

González-Martín Moisés, Gonzalez-Pastrana Jose Antonio, Behr Christian, Brueggemann Thomas,
Rominger Claude, Keil Karsten, Montes-Sánchez Sergio, Paredes-Huerta Roberto

{moises.gonzalez, jose.o.gonzalez,christian.behr2, thomas.brueggemann,
claude.rominger,Karsten.keil}@airbus.com, {Sergio.montes, Roberto.paredes}@altran.com

Abstract

Flight Test Instrumentation is a process where multiple measurements must be acquired by means of
different equipment and acquisitions systems. With the Ethernet adoption, multiple vendor solutions
can be connected to the Flight Test acquisition network. As a consequence, vendor-specific systems
configuration is not enough for the control and generation of a global FTI configuration.

Having in mind the requirement of flexibility and compatibility, Flight Test in Airbus Defence and Space
is working on the implementation of a generic architecture capable to set up complex Ethernet
architectures using a business-model-agnostic paradigm. This document explains the main steps in
the programming generation process: definition of the input interfaces, design of a core solution based
on a plug-in philosophy (allowing an easy integration of new components/manufacturers/protocols),
and output generation.

Key words: DASP, FTI, Plug-in, XML, Database, Data Acquisition Configuration

Introduction
Until now, acquisition systems have been
programmed by using manual processes,
combined with ad-hoc tools which have to be
updated every time a manufacturer changes its
systems or releases new hardware
components. This tailor-made solution implies a
constant evolution and is definitely vendor-
dependent.

DASP is an all-in-one tool to generate the
programming and configuration files for the
acquisition systems given a prototype.

Fig. 1.DASP schema

The main benefit of DASP is to have a common
normalized starting point for generating FTI
configurations for heterogeneous acquisitions
systems. There is a global need of having a tool
for supporting multi-vendor FTI architectures
and handling large flight test programs with a
huge set of parameters and measurements.

The new approach for generating configurations
allows facing all the challenges considered as
big difficulties in the past:

• Ensure backward compatibility with the
current supported vendors.

• Adopt and maintain new
manufacturers with specific hardware.

• Mitigate the problems derived of
manual processes, such as human-
errors and delays in programming
schedules.

• Support a huge amount of data. Often
dozens of thousands parameters have
to be acquired and doing this with
manual processes is not affordable.

Flight Test – Airbus Defence and Space

 The European Test and Telemetry Conference – ettc2018 186

DOI 10.5162/ettc2018/9.2

• Provide an appropriate preliminary
feedback to final users about errors or
warnings which can derive in future
problems difficult to detect causing
delays and the need of releasing new
configurations.

 Give a fast response to constant
changes requests during a test
campaign

DASP architecture design
Common data model design

The tool is based on a shared common data
model for supporting all the data acquisition
systems features but also parameters,
hardwired measurements and user
requirements have to be programmed.

The information can be provided by means of
XML files or retrieved from a database
(standalone mode vs database integrated
mode). All this data is managed by DASP which
is in charge of loading in the internal data model
to be analyzed before generating the expected
outputs.

Having a common data model reduces the
compatibility problems between different
vendors, allows the reusability of SW modules
and promotes the simplicity of the solution.

The different models have been defined
avoiding specific features or restrictions; the
definition is generic and flexible. This concept
guarantees the agnosticism of the application
which is essential in DASP philosophy.

Plug-in philosophy (Low level shared API)

The plug-in architecture solves the complexity
of having different acquisition system vendors
with their own features and restrictions. By
means of a generic interface definition DASP
manages the different plug-ins on the same
way. From the shared FTI architecture data
model (flexible and generic) is possible to
support all the manufacturer relevant
information.

The different vendor plug-ins must implement
the following methods:

• Set inputs: How DASP data models are
received and checked by the plug-in.

• Build: Each plugin specific model must
be loaded and acquisition system
sources generated from it.

• Generate binaries: The vendor compiler
has been also integrated in the

solution, having a full-row tool which
generates also the acquisition system
binaries with the required parameter
programming.

This design allows the tool extensibility, the
application can be dynamically extended to
include new vendors and capabilities, as
features can be implemented as separate
components they can be developed in parallel
without having cross dependencies, and
therefore an agile environment is guaranteed.
The plugin framework ideally provides simplicity
with a well-defined interface and documentation
for plugin implementation, developers have a
clear roadmap.

By means of using a generic plugin loader
(direct access to build folder), DASP is able to
know how many plug-ins are available to be
used whenever the plugin name matches with
the manufacturer name defined in the FTI
architecture data model.

Fig. 2.Plug-in interface

The plug-in architecture is not only intended to
be used for acquisition systems management,
also configurable FTI equipment and Data
Processing generation is considered as a
plugin-able feature in order to support multiple
FTI modules (recorders, switches, Data
processing files…).

Configurable application

Using configurable models allow the user to
change internal capabilities and execute
different configurations without changing the
source code. There is no need to know about
low level implementation details or having
programming skills, final user can easily change
configuration parameters.

DASP has been implemented as a console
application, in the future it will be included as a
service in the framework FIDA, for managing
the tool some configuration files (currently XML
files but in the future it will be handled by forms
in FIDA) have been implemented where the
user can define configuration parameters, input
paths, constant values…

A general configuration file (for DASP) and
other specific ones (each plug-in has one) are
provided. The idea is not to force the user to

 The European Test and Telemetry Conference – ettc2018 187

DOI 10.5162/ettc2018/9.2

provide all the configuration values so DASP
has those parameters internally defined with
default values according to the most used
configurations.

Required inputs building & integration
Input data models

All the data is serialized into DASP model from
the different input data sources. The model is
divided in four layers:

• ICD data: Includes all the information
about bus parameters (currently Arinc-
429, Serial, CAN, Mil-Std-1553,
Ethernet and Stanag-3910 buses are
supported)

• Hardwired measurements: Defines the
analog and discrete measurements
installed on the A/C such as sensors,
on/off signals and so on.

• User requirements: Defines the
parameters to be programmed and
where to send them. This input is
based on the defined hardwired
measurements and also on the ICD
data so this model is directly correlated
with the previous ones. After
considering the requirements we could
have a subset of measurements and
bus parameters.

• FTI architecture: Includes all the
information about the HW acquisition
architecture installed on the A/C; the
location of the acquisition cards,
internal card settings, channel
parameters configuration, bus and
measurement connections as well as
how the input data is linked to the
outputs.

The main reason of having these layers is
because there are different actors involved in
the FTI configuration definition process: design
offices, HW specialists and FTI departments.
Each layer has its own restrictions and can be
validated apart from the others making easier
the process of reporting preliminary errors or
warnings.

Database approach & XML file generation

DASP supports two different ways for providing
the required information: Directly from a
database or by a set of defined XML files, in
this case the information can be stored in a
database as well, but it is translated into a
structured file by means of an auxiliary tool.

Although there is no difference between both
approaches (from the final user point of view),
there are some considerations to be taken
account:

• Using XML files allows DASP to be
compatible with different databases,
making it possible sharing information
between different sites. Most of FTI
departments have its own database
models and it is a hard challenge to
define a common model for every
organization or department, ensuring
the lack of backward incompatibilities
and the backup of the legacy data into
this new model.

The use of these auxiliary files solves
this problem with the disadvantage of
having the need of defining some tools
or methods for generating the files but
with the advantage of avoiding the need
of a database connection in DASP
(standalone execution) and the need of
retrieving the information from a
database which is a less efficient
process.

• DASP can be integrated with a
Database and retrieve the data directly
from it. This way of working implies the
implementation of specific modules
(based on database model) for
querying the information. Despite the
fact that a database promotes
centralization (different applications
connected to the same data source),
data security and minimizes data
inconsistency it requires a dedicated
connection and more computational
resources.

Manufacturer support & implementation

Current challenge

The lack of a common language for different
manufacturers and acquisition equipment
configuration, and the wide casuistic due to the
multiple vendor restrictions, derives into a
complex scenario difficult to be managed and
maintained.

Using a manufacturer common model

Each manufacturer has its own standard and
format but the required information is the same
for all of them. Starting from a common input
model (FTI architecture data model) is possible
to support different data formats.

Each plugin has its own data model and is in
charge of loading it from the provided common
model. The conversion restrictions and

 The European Test and Telemetry Conference – ettc2018 188

DOI 10.5162/ettc2018/9.2

particularities have to be implemented and
known at the plug-in level, isolating vendor
dependencies between them, but also with
DASP that does not need to know specific
considerations. One of the benefits of having
the plug-in based architecture is the fact that we
can manage this complex scenario without
compromising the design of the whole
application. Specific tasks can be performed at
the plug-in level, by doing this, only the plug-in
will depend on third-party libraries, for example,
a development toolkit provided by a
manufacturer to program acquisition cards, or
generate binaries for specific hardware
architectures.

Plugins could also implement its own data
models in order to generate the required source
files to be compiled for generating specific
binary files.

Acquisition system Datasheet automatization
(by using a common HW description model)

Some automated processes have been
implemented promoting the application
maintainability, regarding the different
acquisition system vendors, a procedure has

been defined for avoiding code modifications
every time a new card or HW is released.

In the case of CW-Controls (formerly ACRA),
the use of XdefML (similar to .xsd schemas)
allows an easier way for supporting the different
cards provided by this manufacturer. This file
includes all the information for configuring a
specific card (allowed ranges, data types,
properties to be configured…) with the same
structure. This schema is the translation of the
system data sheet into an open-standard format
file. The implementation of generic parsing
method (in the plugin level) allows the support
of new cards without modifying the code, just by
managing this datasheet files (in most cases
provided and supported by the vendors).This
philosophy allows to know in a simple way how
to configure the acquisition cards, set default
values or validate the given data.

In other cases, vendors do not provide any file
or format to be automated, we’ve seen that
investing time and effort in generating and
maintaining this information really worth it
instead of implementing vendor-specific
solutions sensitive to changes or updates of
existing components.

Fig.3. ACRA Plug-in building process diagram

DASP output generation
Output description

DASP generates multiple outputs, in some
cases these outputs are not directly generated
by DASP but by the plug-ins:

• DAS binaries: As a process of each
plug-in, the required binary files are

generated in order to configure the
different acquisition systems (this
process depends directly on the
compiler provided by the
manufacturer).

• Data Processing configuration files: In
order to know how to decode the
information programmed in the

 The European Test and Telemetry Conference – ettc2018 189

DOI 10.5162/ettc2018/9.2

acquisition systems which is send to
the recorder and telemetry facilities,
some configuration files are generated
based on Data Processing Software
Implementation (this procedure is
implemented as a plug-in).

• General architecture configuration files:
DASP has a global picture of the whole
FTI design so it generates a
configuration file which includes not
only information for the programmable
systems, but also includes non-
programmable sources (i.e. GPS
signals) which also belongs to the
architecture too.

• User report files: An ad-hoc information
module has been implemented in order
to provide information about the
execution process (detected errors and
warnings), the programmed parameter
list (for monitoring purposes) and some
other information considered as
relevant for debugging purposes.
Modular design and multi-format
support (plain text, .csv, .xlsx etc.)
allows an easy way for generating
reports and logs.

Preliminary data validation & error
handling is considered as a key feature
for reducing time and costs while
generating parameters programming,

This is a module in permanent
progress.

Future capabilities
Integration with diagnosis & analysis tools

An important phase is the verification phase
when all the raw date has to be processed and
analyzed. To perform this task, some tools are
used, such as the network sniffer Wireshark, so
all the traffic must be dissected and processed
in order to know the internal characteristics of
the received parameters.

The most important problem is that these
applications cannot analyze deep enough the
UDP packets because they do not have
information about the structure of each
message. This structure depends on the nature
of parameters which have been programmed in
the acquisition systems, so DASP can take the
advantage of having all this information and
provide an auto-generated script allowing the
filtering and a deep analysis of the data.

In the case of Wireshark, the tool is ready to be
integrated with LUA scripts, which can be a new

output in DASP, but also it is possible to build
dynamic libraries or any other ad-hoc module to
be integrated with any monitoring tool.

A/C DAS binary deployment

The process of installing the configuration files
in the acquisition systems is a manual process
done by the specialist in the A/C. In order to
automate this procedure, DASP will provide an
installation script for uploading the binary files
directly in the A/C facilitating the installation
process. The script needs to be executed in the
FTI A/C network.

Sanitization of Data Processing configuration
files

DASP will support the process of removing
sensitive information from the generated
outputs. As an optional input defines a list of
specific parameters which have to be
programmed but filtered from GS configuration
files and parameter reporting, DASP will be
able to deal with classified information, reducing
the generated outputs classification level.

Automatic unitary test generation

An important stage while programming all the
acquisition systems is to verify the configuration
in the laboratory before installing the binaries in
the A/C. Until now, this process is manually
performed, DASP is able to generate unit test
or applications for validating the expected
behavior of every acquisition component
reducing the scheduling time

Conclusions
DASP will be the future tool in FTI configuration
programming tasks in Airbus Defence and
Space, its greatest success will depend on the
participation of the different actors involved in
the process. Since it has been developed as a
scalable modular tool it allows new features
implementation in an easy-way. Having a
multidisciplinary normalized and compatible
programming tool will reduce costs and timing.

Acronyms
A/C: AirCraft

DAS: Data Acquisition System

DASP: Data Acquisition System Programmer

FIDA: Flight Instrumentation DAtabase

FTI: Flight Test Instrumentation

HW: Hardware

ICD: Interface Change Document

XML: eXtensible Markup Languaje

	1. Sensors
	1.1
	1.4
	1.7

	2. Modulation & Coding
	2.1
	2.2
	2.3
	2.4

	3. Data Management Standards
	3.1
	3.2
	3.3

	4. RF Design
	4.1
	4.2
	4.3

	5. Time-Space position technoligies
	5.1
	5.2
	5.3

	6. Network & Architectures
	6.1
	6.2

	7. AIM 2018
	7.1
	7.2
	7.3
	7.4

	8. Spectrum Efficiency
	8.1
	8.2
	8.3
	8.4

	9. Data Acquision
	9.1
	9.2
	9.3
	9.4
	9.5

	10. Imaging & Video
	10.1
	10.2
	10.3
	10.4
	10.5

	11. Network & Data acquisition
	11.1
	11.2
	11.3
	11.4
	11.5
	11.6

	12. Data Management Applications
	12.1
	12.2
	12.3
	12.4
	12.5

