
	 The European Test and Telemetry Conference – ettc2018	 285

DOI 10.5162/ettc2018/12.2

A case study in creating flexible FTI configuration software

Alan Cooke
Curtiss-Wright, Dublin, Ireland,

acooke@curtisswright.com,

Abstract

This paper presents a case study in designing flexible, future-proofed FTI configuration software. It
starts by outlining the challenges posed to software in supporting the combined FTI and related
product lines of two historically disjoint customer bases that differ in their software user experience but
still have the same high expectation levels when it comes to customer support. The paper then
describes how Aerospace Instrumentation (AI) used this opportunity to reconfigure two software
products to not only support historically separate product lines, but also to create greater choice for
their customers in addition to providing greater flexibility and options for the future.

Key words: FTI, Software

Introduction

In an ideal world, Flight Test organizations
could use hardware from multiple vendors to
pick and choose the best solution. However,
there are many issues that prevent this – one of
which is the need to use different software
suites to configure and manage the hardware.
This paper outlines how software from two
formally separate businesses are being
adapted to allow customers to take full
advantage of the vast product portfolio from
their combined product lines. It also describes
how this change has further enhanced the
flexibility and options now available to its
customers.

Integration Problems

Flight test programs require Data Acquisition
Systems (DAS) to collect and process valuable
data. These DAS consist of many elements
including sensors, data acquisition units,
recorders, switches and transmitters. Setting up
these components is achieved through
software. There are several vendors that supply
some or all of these components and they all
have their own software to support them. In an
ideal world, engineers would be able to cherry
pick equipment from multiple vendors, and re-
use whatever equipment they have from
previous programs, to build the system they
need. However, trying to do this will typically
result in integration problems because of the
need to use multiple software suites. This
means they are very likely to encounter
incompatibility issues, for example, with data

formats and time synchronization. Even if they
can find ways to work around these issues,
there is increased work associated with using
multiple software suites. It also increases the
risk of time delays as the system will be more
complex with more things to go wrong.

While initiatives such as iNET are setting
standards that should facilitate cross vendor
hardware support in several different software
packages, it will likely be some time before
such standards are widely in use. Various other
standards, such as XidML and MDL, have the
potential to be part of the solution but without all
vendors buying into working towards a
universal software platform, engineers will still
need to use separate software packages.

In the meantime, engineers in the field must
contend with workarounds that reduce
efficiency and add risk to a program by adding
another layer of complication to a system that
may result in delays. Vendors themselves can
help here by integrating some equipment with
their own prior to delivery. This is an effective
solution, but it may add delays in delivery of
systems, add cost and is not as flexible. This
approach works best when there is limited
equipment being integrated as more equipment
from more vendors adds overhead to the
integration effort.

	 The European Test and Telemetry Conference – ettc2018	 286

DOI 10.5162/ettc2018/12.2

Posible Solutions

A common scenario in many flight test faculties
and at aircraft OEMs is to try and persist with
one vendor as long as is practical. This
circumvents the problems associated with
integrating multi-vendor systems and it also
allows the re-use of database and visualization
systems as well as negating the need for new
product training and processes. The
disadvantage is that organizations can find they
are getting ‘locked in’ to certain product lines
and may be selecting equipment not because it
is the best fit for the job but because it is the
most convenient overall.

Case Study

Background

Curtiss-Wright recently acquired Teletronics
Technology Corporation (TTC) – a leading
supplier of DAS. Curtiss-Wright was already a
leading DAS supplier so it now has a combined
product range that no other FTI vendor can
hope to match. This provides an unprecedented
opportunity for customers, but poses a
significant challenge to Curtiss-Wright’s
TTCWare and DAS Studio configuration
software.

Individually, both software packages are
extremely flexible, each optimized to maximize
the productivity of its users. They can both be
used to configure Data Acquisition Units (DAU),
Recorders, Switches, High-speed Cameras and
much more. However, both applications take a
different approach to configuring a system.
Furthermore, each application has a large, well-
established and loyal user base, making it
undesirable to simply choose one of these
applications as the sole configuration software
for the Aerospace Instrumentation product
range.

Figure 1 - TTCWare and DAS Studio are both
highly capable, but they take different

approaches

Without steps to effectively integrate their
functionality, customers would have to use two
separate pieces of software, maintain two
different processes to configure hardware and
be forced to support different configuration file
formats. This is far from ideal for customers
and the issues are similar to those faced by
many Flight Test Organizations utilizing
equipment from two or more DAS vendors.

Curtiss-Wright therefore initiated an integration
effort that was aimed at avoiding the issues
encountered when integrating equipment from
two separate product lines. The initiative also
aimed to allow users to benefit from more
choice, greater equipment reuse and ultimately
to provide greater overall flexibility.

Flexibile Software

As part of the reconfiguration of Aerospace
Instrumentation’s configuration software a
number of constraints where imposed.

Design Constraints

A number of constraints were imposed on the
reconfigured software.

1. The software must facilitate the existing
processes and expectations of
previously distinct customer bases.

2. Users should be given the choice of
either using DAS Studio or TTCWare

3. The software should provide both GUI
and Command line interfaces

4. Both configuration software needed to
support hardware from both business
units

5. The software must maintain the highest
level of quality and reliability possible

In addition to these requirements the following
objectives needed to be met

	 The European Test and Telemetry Conference – ettc2018	 287

DOI 10.5162/ettc2018/12.2

1. Add support for new Data Acquisition
Cards as quickly as possible

2. Be able to extend the functionality of
the software over time. As more and
more capabilities are added to
combined product line the software
needs to be easily able to support
these features without major rewrites

3. The ability to grow to meet (the perhaps
unanticipated) future needs of
customer. This could potentially
include new Bus and Transmission
protocols, new synchronization
mechanism, sensor types, and so on.

4. All or some of the core functionality of
both TTCWare and DAS Studio may
need to be ported to other platforms
(such as mobile devices or different
Operating systems) or distributed
across multiple platforms

5. Some or all of the core functionality
may need to be incorporated into third
party software

6. Support emerging and future standards
such as iNET

There was also an implicit assumption that the
software will need to be constantly reconfigured
over time in unanticipated ways. In summary,
the reconfigured software needed to be
designed for maximum flexibility.

Building Flexible Software

The design constraints dictated a flexible
design but what exactly is meant by flexible
software and how can flexible software be built?
From a software architecture point of view,
software requirements fall in to two categories,
functional and non-functional requirements.
Flexibility is a non-functional requirement, and
maps to what is known as a Quality Attribute
[1]. Quality Attributes are used to guide the
design of software, they generally do not
specify specific technologies or functional
features and essentially describe certain
properties that a software design must possess.

The Quality Attribute of Flexibility, given the
constraints described above can be further
refined into other Quality Attributes. There
exists a set of well know techniques that are
designed to meet any given set of Quality
Attributes.

	 The European Test and Telemetry Conference – ettc2018	 288

DOI 10.5162/ettc2018/12.2

Table 1 lists these.

.

Table 1 – The Quality Attributes associated with flexible software and techniques used to meet them

Attribute Description

Modularity Using reusable components to build software. It helps to maintain the flexibility by
enforcing the separation of concerns between different functionally and semantically
similar blocks of code. This better enables the reuse of different functionality across
multiple pieces of software

Extensibility This is the ability to easily extend the functionality of the software and to greatly
reduce the fragility of the software. This is greatly helped by building software using
semantically coherent Modules/Components

Portability Software portability to multiple platforms i.e. different hardware platforms and OS

Reusability The ability to reuse some or all of the functionality across multiple pieces of software

Testability This is the ability to test automatically test the functionality of the software. This is a
necessary to maintain the existing quality of software by automatically detecting
regression issues in the software

Attribute Example Techniques

Modularity Code to Interfaces: Using this technique, code implement a specific public interface
or “contract”. Other code relies on or codes to these published interfaces and is
ignorant of how the code is actually implemented behind the published interfaces

Semantic Coherence: This is the practice of co-locating functionally related software
in the same library or component.

Extensibility Dependency Injection: The ability to “inject” functionality into other pieces of code,
generally done by passing a module that implements a specific “Interface” into
dependent code. Specifying in an external configuration file increase flexibility.

Loose coupling: For maximum flexibility and to reduce the fragility of the software the
various components/modules that compose a system should not be aware of each
other. Specifically, the software should be design so that modules/communicate with
each other using either a message based system such as a message broker, be
event driven or perhaps some combination of both.

Product Line Architectures: This technique can be used if variants of the same
product are required. This is can be achieved using configuration files and is greatly
eased by using some or all of the techniques discussed above [2]

Plugins: This allows functionality that implements or conforms to specific interfaces to
be automatically discovered and integrated at specific locations in the software

Portability Layered Architecture: Where software is composed into two or more layers that
increasingly abstract the software functionality from the physical platform or OS.

A layered architecture combined with the use of loosely coupled, modular
components in each layer also aid portability.

Reusability APIs and SDKs: Creating a set of APIs and SDKs, accompanied by clear
documentation can greatly increase the reusability of software.

Using semantically coherent software modules helps to partition software into
reusable units. Coding to Interfaces helps to isolate the specific implementation
details from the software using the modules.

Testability Coding to Interfaces help in the testing and verification of software by allowing test
code to use “Mocking” techniques

1
 to test code and to automate unit testing

2

Using layered architectures greatly increases the testability of software by allowing
the various layers of the software to be tested separately. In particular, it allows the
software that does not interact with hardware to be tested more easily.

1
 See https://en.wikipedia.org/wiki/Mock_object and https://github.com/Moq/moq4/wiki/Quickstart

2
 See https://en.wikipedia.org/wiki/Unit_testing and http://nunit.org/

Table 1 – The Quality Attributes associated with flexible software and techniques used to meet them

Attribute Description

Modularity Using reusable components to build software. It helps to maintain the flexibility by
enforcing the separation of concerns between different functionally and semantically
similar blocks of code. This better enables the reuse of different functionality across
multiple pieces of software

Extensibility This is the ability to easily extend the functionality of the software and to greatly
reduce the fragility of the software. This is greatly helped by building software using
semantically coherent Modules/Components

Portability Software portability to multiple platforms i.e. different hardware platforms and OS

Reusability The ability to reuse some or all of the functionality across multiple pieces of software

Testability This is the ability to test automatically test the functionality of the software. This is a
necessary to maintain the existing quality of software by automatically detecting
regression issues in the software

Attribute Example Techniques

Modularity Code to Interfaces: Using this technique, code implement a specific public interface
or “contract”. Other code relies on or codes to these published interfaces and is
ignorant of how the code is actually implemented behind the published interfaces

Semantic Coherence: This is the practice of co-locating functionally related software
in the same library or component.

Extensibility Dependency Injection: The ability to “inject” functionality into other pieces of code,
generally done by passing a module that implements a specific “Interface” into
dependent code. Specifying in an external configuration file increase flexibility.

Loose coupling: For maximum flexibility and to reduce the fragility of the software the
various components/modules that compose a system should not be aware of each
other. Specifically, the software should be design so that modules/communicate with
each other using either a message based system such as a message broker, be
event driven or perhaps some combination of both.

Product Line Architectures: This technique can be used if variants of the same
product are required. This is can be achieved using configuration files and is greatly
eased by using some or all of the techniques discussed above [2]

Plugins: This allows functionality that implements or conforms to specific interfaces to
be automatically discovered and integrated at specific locations in the software

Portability Layered Architecture: Where software is composed into two or more layers that
increasingly abstract the software functionality from the physical platform or OS.

A layered architecture combined with the use of loosely coupled, modular
components in each layer also aid portability.

Reusability APIs and SDKs: Creating a set of APIs and SDKs, accompanied by clear
documentation can greatly increase the reusability of software.

Using semantically coherent software modules helps to partition software into
reusable units. Coding to Interfaces helps to isolate the specific implementation
details from the software using the modules.

Testability Coding to Interfaces help in the testing and verification of software by allowing test
code to use “Mocking” techniques

1
 to test code and to automate unit testing

2

Using layered architectures greatly increases the testability of software by allowing
the various layers of the software to be tested separately. In particular, it allows the
software that does not interact with hardware to be tested more easily.

1
 See https://en.wikipedia.org/wiki/Mock_object and https://github.com/Moq/moq4/wiki/Quickstart

2
 See https://en.wikipedia.org/wiki/Unit_testing and http://nunit.org/

Table 1 – The Quality Attributes associated with flexible software and techniques used to meet them

Attribute Description

Modularity Using reusable components to build software. It helps to maintain the flexibility by
enforcing the separation of concerns between different functionally and semantically
similar blocks of code. This better enables the reuse of different functionality across
multiple pieces of software

Extensibility This is the ability to easily extend the functionality of the software and to greatly
reduce the fragility of the software. This is greatly helped by building software using
semantically coherent Modules/Components

Portability Software portability to multiple platforms i.e. different hardware platforms and OS

Reusability The ability to reuse some or all of the functionality across multiple pieces of software

Testability This is the ability to test automatically test the functionality of the software. This is a
necessary to maintain the existing quality of software by automatically detecting
regression issues in the software

Attribute Example Techniques

Modularity Code to Interfaces: Using this technique, code implement a specific public interface
or “contract”. Other code relies on or codes to these published interfaces and is
ignorant of how the code is actually implemented behind the published interfaces

Semantic Coherence: This is the practice of co-locating functionally related software
in the same library or component.

Extensibility Dependency Injection: The ability to “inject” functionality into other pieces of code,
generally done by passing a module that implements a specific “Interface” into
dependent code. Specifying in an external configuration file increase flexibility.

Loose coupling: For maximum flexibility and to reduce the fragility of the software the
various components/modules that compose a system should not be aware of each
other. Specifically, the software should be design so that modules/communicate with
each other using either a message based system such as a message broker, be
event driven or perhaps some combination of both.

Product Line Architectures: This technique can be used if variants of the same
product are required. This is can be achieved using configuration files and is greatly
eased by using some or all of the techniques discussed above [2]

Plugins: This allows functionality that implements or conforms to specific interfaces to
be automatically discovered and integrated at specific locations in the software

Portability Layered Architecture: Where software is composed into two or more layers that
increasingly abstract the software functionality from the physical platform or OS.

A layered architecture combined with the use of loosely coupled, modular
components in each layer also aid portability.

Reusability APIs and SDKs: Creating a set of APIs and SDKs, accompanied by clear
documentation can greatly increase the reusability of software.

Using semantically coherent software modules helps to partition software into
reusable units. Coding to Interfaces helps to isolate the specific implementation
details from the software using the modules.

Testability Coding to Interfaces help in the testing and verification of software by allowing test
code to use “Mocking” techniques

1
 to test code and to automate unit testing

2

Using layered architectures greatly increases the testability of software by allowing
the various layers of the software to be tested separately. In particular, it allows the
software that does not interact with hardware to be tested more easily.

1
 See https://en.wikipedia.org/wiki/Mock_object and https://github.com/Moq/moq4/wiki/Quickstart

2
 See https://en.wikipedia.org/wiki/Unit_testing and http://nunit.org/

	 The European Test and Telemetry Conference – ettc2018	 289

DOI 10.5162/ettc2018/12.2

Results

The following sections outline the results of the
reconfiguration effort within Curtiss-Wright,
Aerospace Instrumentation.

One software, Two User Interfaces

Both DAS Studio and TTCWare have been
reconfigured to use a common functional core

(

Figure 2).

Figure 2 - Both TTCWare and DAS Studio use a
common functional core

Specifically, the core business logic for both
DAS Studio and TTCWare have been wrapped
in separate APIs, and these in turn have been
separated from the user interface layers. This
permits support for hardware from either
company to be added to either application with
minimal effort. The approach also allows
existing and future customers to use either
TTCWare or DAS Studio as their preferred
Graphical User Interface (GUI).

Discover & Program

The reconfigured software makes it easy to
program mixed systems, for example, DAS
Studio can communicate with, discover and
configure equipment using native hardware
protocols that would have formally only been
achievable with TTCWare3 (Figure 3).

Figure 3 - Using DAS Studio to program a variety of
equipment from formally different product lines

Similarly, TTCWare can discover and program
equipment using native protocols that would
have previously required DAS Studio (Figure 4).

Figure 4 - TTCWare being used to program an Axon
along with a variety of TTC equipment

This organizations will be able choose a wider
mix of hardware than before and the choice of
either a DAS Studio of TTCWare as their
configuration software

Enhanced Flexibility

The common functional core also facilitates a
greater choice for customers in how they
choose to configure their systems.

3
 Such as TDDP protocol used to discover TTC

equipment

	 The European Test and Telemetry Conference – ettc2018	 290

DOI 10.5162/ettc2018/12.2

Support for Industry metadata standards

Aerospace Instrumentation engineers are very
active on industry standard groups such as the
RCC and iNET, and in particular, have made
key contributions to the development of MDL
(Measurement Definition Language). They are
also founding members of the XidML
community.

This expertise means that both TTCWare and
DAS Studio offer unrivalled flexibility in how
customers choose to describe their data
acquisition systems. Customers can now use
TTC XML, XidML and eventually MDL to define
the structure of their data acquisition networks
and how they are configured.

	 The European Test and Telemetry Conference – ettc2018	 291

DOI 10.5162/ettc2018/12.2

Command line programming

Many customers store their configuration data
in company databases and other proprietary
formats. They then process the data in these
systems and convert it to file formats required
by specific vendor FTI equipment.

To facilitate this approach, Aerospace
Instrumentation provides a set of well-
documented command line tools for both
verifying configuration file formats and for using
them to program their systems. This application
takes a XidML file as input and can be used to
verify the configuration and/or program one
product line or a mix of the two product lines.
The command line interface will also take an
MDL file as input once the standard has been
finalized and published.

Powerful APIs

In addition to giving customers the choice of
which application to use (TTCWare, DAS
Studio or Command Line Interface) a set of
powerful APIs are also available as shown in
Table 2.

XidML &
XdefML
APIs

Customers can use these APIs to
create, manipulate and validate
XidML and XdefML files. These
APIs are used extensively in DAS
Studio and TTCWare to generate
configuration screens.

TTCWare
Core API

This API gives users direct
access to the core TTCWare

functionality. It can be used by
customers to discover and

program TTCWare hardware, in
addition the ability to define

configurations and save/read
them to/from TTC XML files.

DAS
Studio
Core API

This API gives customers direct
access to the core DAS Studio
business logic and functionality.
It can be used by to discover and
program DAS Studio hardware,
in addition the ability to define
configurations and save/read
them to/from XidML files.

RESTful
API

For extra flexibility, combined
core API functionality is also
accessible via a common
RESTful interface.

Table 2- Available APIs

Together, these APIs provide a level of
flexibility and choice that are not provided by
other FTI vendors.

Built for the Future

The reconfiguration of TTCWare and DAS
Studio was also carried out with an eye to the
future. In particular, it was anticipated that
customers may need the flexibility to deploy the
software to different platforms and operating
systems

Linux

All of the core APIs can now be run on the
Linux operating system.

All command line interfaces are also capable of
running on Linux, allowing customers to create
and validate configuration files, in addition to
programming both product lines.

Browser-based configuration

The RESTful API provides a mechanism for
browser-based user interfaces (Figure 5) to
configure and program hardware. As a result,
the core functionality can now be hosted on
individual DAUs and or even if required on
company networks offering further flexibility to
Aerospace Instrumentation customers.

	 The European Test and Telemetry Conference – ettc2018	 292

DOI 10.5162/ettc2018/12.2

Figure 5 - Browser-based FTI configuration software

Mobile devices

Native Android, iOS and Windows Phone apps
can also leverage the RESTful API to configure
and program systems. In this scenario, the
native mobile app connects to individual DAUs
that host and run the RESTful FTI configuration
services allowing users to adjust the
configuration of the DAU.

Conclusion

Curtiss-Wright’s full data acquisition product
lines, under the umbrella of Aerospace
Instrumentation, provide an unrivalled portfolio
of products. This offers customers an
unprecedented level of flexibility and choice but
also presented a challenge to TTCWare and
DAS Studio, the configuration software used for
the product lines, as both applications have a
wide and varied user base.

To address this challenge both TTCWare and
DAS Studio have been reconfigured to allow
equipment from either product line to be added
to both configuration applications with minimal
effort. This was achieved through the creation
of a common functional core that is
incorporated into both DAS Studio and
TTCWare. The end result is that users will have
the choice of using either TTCWare or DAS
Studio for configuring system comprised of
mixed hardware.

The reconfiguration of the software has also
allowed Aerospace Instrumentation to offer
even greater flexibility for customers by
providing a set of powerful APIs and command
line tools, support for multiple configuration file
formats such as MDL, TTC XML and XidML, in
addition to creating a pathway to future
software support on multiple platforms and
operating systems.

References

[1] L. Bass, P. Clements and R. Kazman,
“Software Architecture in Practice (SEI Series in

Software Engineering (Hardcover)),” Addison-
Wesley Professional; 3rd edition
(September 25, 2012).

[2] P. Clements and L. Northrop, “Software

Product Lines,” Addison-Wesley
Professional; 3rd edition (August 30,
2001).

	1. Sensors
	1.1
	1.4
	1.7

	2. Modulation & Coding
	2.1
	2.2
	2.3
	2.4

	3. Data Management Standards
	3.1
	3.2
	3.3

	4. RF Design
	4.1
	4.2
	4.3

	5. Time-Space position technoligies
	5.1
	5.2
	5.3

	6. Network & Architectures
	6.1
	6.2

	7. AIM 2018
	7.1
	7.2
	7.3
	7.4

	8. Spectrum Efficiency
	8.1
	8.2
	8.3
	8.4

	9. Data Acquision
	9.1
	9.2
	9.3
	9.4
	9.5

	10. Imaging & Video
	10.1
	10.2
	10.3
	10.4
	10.5

	11. Network & Data acquisition
	11.1
	11.2
	11.3
	11.4
	11.5
	11.6

	12. Data Management Applications
	12.1
	12.2
	12.3
	12.4
	12.5

