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Abstract 

Regression testing is the task of retesting a software system after changes have occurred, e.g., after a 
new version has been developed. Usually, only a subset of test cases is executed for a particular version 
due to restricted resources. This poses the problem of identifying important test cases for testing. 
Regression testing techniques such as test case prioritization have been introduced to guide the testing 
process. Existing techniques usually require source code information. However, system testing of 
complex applications often restricts access to the source code, i.e., they are a black-box. Here, a large 
set of test cases is manually executed. In previous work, we proposed a test case prioritization technique 
for system testing using supervised machine learning. We designed our approach to prioritize manually 
executed test cases, i.e., it analyzes meta-data and natural language artifacts to compute test case 
priority values. In this paper, we apply further machine learning algorithms and an ensemble learning 
approach. In addition, we evaluate our approach on three different data sets in total, which all stem from 
the automotive industry and, thus, represent real life regression testing data sets. We analyze the results 
of our approach in terms of its failure finding potential. Our findings indicate that black-box testing can 
be improved using machine learning techniques.  

Key words: Test Case Prioritization, Black-Box Software Testing, Regression Testing, Machine 
Learning, System Testing  

1. Introduction 

Modern software systems have to fulfill a large 
set of requirements due to their complexity and 
longevity. Thus, in the crucial phase of software 
testing in a software engineering project, the 
correspondence of the program behavior to its 
requirements is assessed. The more complex 
the system under test, the higher is the testing 
effort, which takes up to 50% of all project 
resources in software engineering [13]. 

While testing is an important task that is part of 
most professional projects, it still has its 
limitations. As the testing effort is larger than 
available testing resources, testing has to be 
focused on important aspects of the application, 
which are likely to fail or are of high importance 
for the overall functionality. However, especially 
in black-box testing, the identification of 
important test cases is non-trivial due to the lack 
of source code availability [26]. White-box test 
techniques are able to identify changes in the 
software on code level, which can guide the 
tester to changes, which should be retested in 
regression testing. 

In contrast, black-box testing is focused on the 
integrated system [2]. Source code is not 
available due to various reasons, e.g., contract 

issues or the usage of precompiled components 
such as libraries or components developed by 
3rd party companies such as suppliers [26]. One 
prime example of component-based 
development is the automotive industry, where 
different companies implement electronic control 
units, which are later integrated as a whole. Most 
regression testing techniques focus on source 
code to select or prioritize test cases [29,16,5]. 
This reduces their applicability in black-box 
testing. 

To tackle the issue of black-box regression 
testing, we introduced a regression testing 
technique based on supervised machine 
learning in previous work [19]. Our approach 
prioritizes black-box test cases written in natural 
language with the aim to emulate test experts 
and, preferably, find failures as early as possible 
in the testing process. It uses machine learning 
(ML) algorithms to find patterns in existing data. 
Previously, we evaluated our test case 
prioritization approach using two case studies, 
one from the automotive industry and one from 
academia. 

In this paper, we diversify and extend our 
approach using additional ML algorithms to 
prioritize black-box test cases, i.e., we introduce 
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the application of neural networks [12], k-nearest 
neighbor (KNN) [27] and logistic regression [14]. 
We further extend our concept by combining the 
output of several ML algorithms to create an 
ensemble learner [27].  Furthermore, we extend 
our evaluation to a total of three complex 
industrial systems to make a more general 
assumption about the effectiveness of our 
approach. In total, we apply these techniques to 
three industrial case studies, which provide 
different features. 

In summary, we make the following contributions 
in this paper: 

1. We extend our existing test case 
prioritization approach by means of 
additional ML algorithms, which are used in 
isolation and as an ensemble. We are able 
to show that our approach is flexible in terms 
of applied algorithms. 

2. We investigate the effectiveness of our 
technique on three industrial, real-life 
subject systems. While each system is a 
software testing project, they are different in 
nature. Our evaluation results indicate that 
our approach is indeed applicable to a wide 
range of projects. 

The remainder of this paper is structured as 
follows: We explain necessary background 
knowledge in Section 2. Section 3 gives an 
overview of our general test case prioritization 
concept. In Section 4, we briefly introduce the 
machine learning algorithms we apply in this 
paper to perform a test case prioritization 
approach.  In Section 5, we describe our case 
evaluation setup and results. We discuss related 
work in Section 6. We conclude this paper and 
give insights on future work in Section 7. 

2. Background 

In modern software engineering, testing is one of 
the most important aspects to ensure software 
quality [13]. Testing should commence as early 
as possible and is an important part of each step 
in the software development process [2]. 
Especially regression testing is of importance as 
software development is not stopped after a 
version has been finished, but rather developed 
in a continuous fashion, going from one version 
to the next [20]. Regression testing focuses on 
the retest of already tested parts of a software 
system to ensure that changes do not influence 
previously implemented functionality [21]. To 
ensure the correct behavior of a system after a 
change, a full test is necessary, i.e., the 
execution of each defined test case for each 
version under test. However, full testing of a 
software version is not feasible due to restricted 
resources and complex software systems [7, 29]. 

To cope with limited testing resources, different 
regression testing techniques have been 
developed to reduce the number of test cases to 
be executed. Most techniques are categorized 
into test case prioritization, test case selection 
and test case minimization approaches [29]. All 
of these techniques are used to guide the focus 
of the testing efforts. Each approach computes a 
priority of each individual test case for a 
particular software version under test based on 
different criteria, e.g., changed code coverage 
[16, 29]. While test case selection and 
minimization aim to reduce the set of executed 
test cases, e.g., by identifying redundancies, test 
case prioritization aims to sort the test cases 
according to their priority. 

Prioritization of test cases has one advantage 
over a selection: it allows continuous testing until 
resources are exhausted or all test cases are 
executed, while always focusing on the most 
important test cases [22]. Test case selection, on 
the other hand, still requires the full execution of 
the selected set, which might still be very large. 
Thus, we will focus on test case prioritization in 
this paper. In particular, we aim to improve the 
test case prioritization for black-box testing, 
where no source code is available. This makes 
regression testing far more difficult, as traditional 
techniques analyze source code changes to 
identify important test cases [7, 16, 29].  

To tackle black-box regression testing, we 
introduced a test case prioritization technique 
[19] which, is based on ML.  ML describes 
techniques which are able to learn from a given 
data set to extract information which is then 
applicable to other data instances [11, 27]. ML 
techniques are in particular useful for 
optimization tasks, where a certain optimization 
goal shall be reached in an efficient manner. ML 
algorithms are plenty and usually require large 
data sets to learn from, as this deduction step 
generates the knowledge required to perform the 
desired tasks on unknown data. 

Different types of ML techniques exist. Two main 
categories to distinguish algorithms are 
supervised and unsupervised ML approaches 
[27]. Both rely on the notion of training data, i.e., 
data instances provided to extract knowledge. 
However, in supervised learning these instances 
contain a label, i.e., their corresponding correct 
output is pre-assigned, e.g., the correct class. 
For instance, supervised ML techniques can 
perform classification tasks, e.g., in spam 
detection [3]. In contrast, unsupervised 
techniques use unlabeled data. Clustering is one 
type of an unsupervised approach, where 
instances are grouped into clusters according to 
their features [27].  
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These types of ML approaches have been 
investigated for decades, and a wide range of 
specific algorithms have been created to perform 
specific ML tasks [11, 27]. To apply a specific ML 
algorithm, the input data is converted into a 
feature vector representation. Each feature is a 
distinct characteristic, e.g., the sender of a spam 
mail. The set of all features is a representation of 
a specific data instance. Based on the feature 
representation, ML algorithms aim to detect 
patterns in the data. Examples are similarities 
between instances, or the prediction of values, 
e.g., to predict the cost of a house based on its 
given features and the costs of other houses, 
which is an example for a regression task.  

ML algorithms can also be used together as an 
ensemble learning approach [27]. Here, either 
different types of algorithms can be combined 
(stacking) or the same type of algorithm can be 
trained with different input to create a boosting 
approach using weak learners. 

This paper focuses on supervised learning as we 
aim to learn from expert knowledge to predict the 
importance of new test cases. We also introduce 
forms of ensemble learning for test case 
prioritization. 

3. Concept 

The test case prioritization concept of this paper 
is an extension of our previous work [19]. Fig. 1 
illustrates a schematic overview of the main 
phases of our test case prioritization approach. 
We give a brief overview of the main steps of the 
test case prioritization approach in the following. 
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Fig. 1. Main Concept of the Black-Box Test Case 
Prioritization using Machine Learning 

As shown in Fig. 1, the data we use to perform a 
test case prioritization is stored in a data 
management system. We are not restricted to 
specific types of data, database or system 
domain. However, we assume to have access to 
a defined set of test cases, a defined set of 
requirements and a set of revealed failures. In 
theory, each test case is linked to at least one 
requirement, e.g., how a certain function shall 
work. Failures, which have been revealed by a 
test case, should be linked accordingly. 
However, in practice this traceability is not 
always given. For our approach, we assume that 
the authors keep the data up to date and provide 
traceability between related artifacts. 

A test expert has to select a training set for the 
ML algorithm. In particular, we require the expert 
to select a set of positive test cases, i.e., test 
cases which are of high importance, used 
regularly or are for some other reason important 
for the current version under test. To 
complement this step, the expert provides a set 
of negative test cases. These are off low 
importance, e.g., as the particular functionality 
has not been changed for many versions or is of 
low risk. Our approach is based on the idea of 
expert knowledge. Thus, we do not further 
restrict this step, but let the tester decide about 
the importance of particular test cases. While 
this is a manually performed step, we only 
require the expert to select a subset of test 
cases. 

The training data is used as input for a machine 
learning algorithm. Our approach is compatible 
to various ML algorithms, which have to fulfill the 
following requirements: 

� Supervised, as we want to emulate the 
decisions made by test experts based 
on two classes: to test and not to test 

� Able to cope with large feature spaces 
with sparse data 

� Result is a ranked classification model, 
i.e., an input value is provided with an 
output value, representing its priority  

After the training data is selected, we extract 
features for test cases based on their meta-data, 
e.g., title, number of linked requirements or 
execution duration. In addition, we parse their 
textual description, a novelty among regression 
testing techniques [19]. Based on the latter, we 
compute a dictionary of all words contained in 
the test cases. We prepare the dictionary using 
natural language processing [6], i.e., 
tokenization [25], stemming and removal of stop 
words [28]. Each word represents a feature, 
which makes the preprocessing useful to reduce 
the vector space.  
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We are able to extract the following information 
for black-box test case prioritization: 

� Test case description (natural language) 

� Test case age 

� Number of linked requirements 

� Number of linked defects (history) 

� Severity of linked defects 

� Test case execution cost (time) 

� Project-specific features (e.g., market) 

Furthermore, we can apply our approach to an 
arbitrary set of features, which are used by the 
human expert for test selection. Thus, the set of 
features, which are considered as input for the 
machine learning, is selected by an expert 
before the learning phase commences. This is 
important for project-specific features. 

After the training data is transformed into a 
feature representation, the ML algorithm 
computes a ranked classification model. 
Afterwards, we use this model to prioritize 
arbitrary, unknown test cases. The result is an 
ordered list of test cases according to their 
priority value. The goal is to identify important 
test cases with a higher likelihood to find failures. 

4. Applied Algorithms 

In this paper, we analyze the effectiveness of 
four different supervised ML algorithms. In this 
section, we give a brief overview of the applied 
algorithms, but refer the reader to additional 
literature on ML for a more in-depth 
understanding of their inner workings, which is 
out of scope for this paper [11, 27].  

First, we apply ranked support vector machines 
(SVM Rank) [15] to solve the test case 
prioritization problem. We used this technique in 
our previous work [19]. SVM Rank is able to 
compute a ranked classification model even for 
large feature vectors and provided good results 
in previous work for black-box regression testing 
[19]. Similar to normal SVMs, the algorithm 
computes a hyperplane in the n-dimensional 
feature vector space to create maximized margin 
between two given classes according to their 
labels. 

The second algorithm we apply is K-Nearest-
Neighbor (KNN) [27]. KNN computes distances 
between neighbor instances and computes a 
value according to their labels. The constant k 
defines the number of neighbors, which are 
considered when computing the class of an 
unknown instance. For our approach, we set k to 
5 and use Euclidean distance as these 
parameters provide the best results.  

Third, we apply logistic regression (Log Reg) 
[14]. This technique computes the probability 
that a given entity belongs to a certain class by 
fitting a logistic regression curve to the data and 
performing a maximum likelihood estimation. We 
use two classes, i.e., to test or not to test. Test 
cases are ordered according to their probability 
that they belong to the former category. 

The fourth Ml algorithm we apply are neural 
networks [12]. They imitate the human brain and 
contain neurons, which are connected with each 
other in a layered form. Each neuron might fire 
given a certain input. We use two hidden layers 
to solve black-box test case prioritization. 

Our approach is able to use all of these 
algorithms to compute priority (or probability) 
values for an arbitrary set of test cases, which 
indicate its importance for the particular system 
under test. The higher the computed value, the 
earlier the test case execution. 

In addition to an isolated execution of the ML 
algorithms, we define two more approaches 
based on the idea of ensemble learning [27]. 
Here, the idea is to combine the results of 
different algorithms or classifiers to create an 
even more powerful ML approach. Hence, we 
introduce historical and combinatorial ensemble 
learning. Fig. 2 shows how n ML algorithms are 
used to regression test m software versions 
under test (VUT). The dotted lines represent 
samples for our ensemble learning concepts. 

Classifier 

for VUT1

Classifier 

for VUT1

Classifier 

for VUT2

Classifier 

for VUT2

Classifier 

for VUTm

Classifier 

for VUTm

Classifier 

for VUT1

Classifier 

for VUT2

Classifier 

for VUTm

...

...

...

...

... ...

VUT1

VUT2

VUTm

Combinatinatorial Ensemble with Different Algorithms

H
isto

rica
l E

n
sem

b
le

 w
ith

 sa
m

e a
lg

o
rith

m

ML Algo. 1 ML Algo. 2 ML Algo. n

...

 

Fig. 2. Schematic Overview of Historical and 
Combinatorial Ensemble Approaches 

First, we introduce the idea of historical 
ensemble learning of classifiers as indicated by 
the vertical dotted line in Fig. 2. Assuming that a 
software application is tested over the course of 
several versions. For each version, a new 
classifier can be trained by testers based on 
previous findings. Thus, several classifiers exist. 
Instead of always using the newest classifier, we 
propose to combine the classifiers of the n latest 
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versions to combine their results and improve 
the prioritization quality. Similar to the concept of 
boosting [27], we use classifiers of the same 
type, e.g., only neural networks. Consequently, 
old classifiers are not dispensed but reused. The 
impact on the result could be identical or decline 
with their age, i.e., version number. 

Our second ensemble learning approach is to 
consider a set of classifiers for the same version 
as indicated by the vertical line in the first row in 
Fig. 2. Here, we combine the results of (a subset 
of) n different algorithms, e.g., neural networks, 
SVM, KNN and logistic regression. This 
combinatorial approach is similar to the concept 
of stacking [27]. When classifying test cases with 
each of these classifiers, we are able to combine 
the given priority values for a given test case and 
compute its average priority value. This provides 
an overall list for all test cases, which is adjusted 
according to all classifiers involved. This 
technique is flexible in terms of what classifiers 
to apply. 

5. Evaluation 

One of the main aspects of this paper is an 
analysis of the practical applicability of our test 
case prioritization approach. We implemented a 
prototype using the Dlib.net ML framework [17] 
and the Accord.Net ML framework [23].  

In this paper, we extend our previous evaluation 
to a total of three industrial subject systems, 
dropping the academic system. To perform a 
structured quality assessment, we first describe 
our research question. Next, the subject systems 
are explained. Afterwards, we go into detail 
about the evaluation methodology. Next, we 
present and discuss the results for all three 
systems. An assessment of potential threats to 
validity concludes this section. 

5.1 Research Questions 

For our evaluation, we formulate the following 
three research questions, which we aim to 
answer in this paper: 

RQ1: What is the impact of the test case 
description features on the quality of the different 
algorithms? 

RQ2: Is there one particular ML algorithm, which 
is the best choice for black-box test case 
prioritization?  

RQ3: Is it possible to train the system without the 
help of an expert to achieve satisfying results? 

5.2 Subject Systems 

In total, we assess our approach using three 
different subject systems. All three systems stem 
from the automotive domain. Compared to our 
previous work, we are able to assess the 

technique’s applicability for real-life data on a 
larger scale. Due to legal restrictions, we refer to 
the systems as System A, B and C. Each system 
describes different types of software testing 
projects and they involve different authors and 
stakeholders. We give a basic overview of the 
size of the three systems in Tab. 1. The table 
contains the number test cases, which are 
available for each project, the number of positive 
(#Pos TC) and negative (#Neg TC) test cases 
used for training, the number of failures (#F) 
linked to the training set as well as the vector 
size, i.e., the number of features extracted. We 
only use the linked failures in the training data 
later for evaluation. 

Tab. 1. Subject System Overview 

ID #Total 
TC 

#Pos 
TC 

#Neg 
TC 

#F Vector 
Size 

A ~1700 111 115 133 ~1500 

B ~2400 493 278 86 ~3150 

C >10.000 213 133 26 ~6400 

 

The three subject systems focus on different 
software systems and are written by different 
persons, leading to a high variety on data 
quantity, quality and content. They even vary in 
their provided meta-data, i.e., some have user-
defined features such as “release market”. Our 
test case prioritization approach is able to handle 
different data artifacts, i.e., types of meta-data 
[19]. Thus, we are still able to apply the 
prioritization to these different projects, even 
though they do not provide the same features. 

5.3 Methodology  

Our technique aims to provide priority values to 
perform a guided test case prioritization. Thus, 
we aim to assess if our technique is indeed able 
to improve regression testing in terms of 
effectiveness. In science, this is measured using 
one particular metric: Average Percentage of 
Faults Detected (APFD) [22]. It computes how 
fast a set f of m failures is covered by n test 
cases. It returns a value between 0 and 1, 
whereas 1 is the theoretical optimum and, thus, 
the best value. In other words, a higher value 
indicates that failure revealing test cases are 
executed first according to the computed priority.  

Formally, APFD is defined as follows [22]: 

���� = 1 − 
∑ ���

�
���

�∙�
+

�

��
     

We measure APFD for all three different subject 
systems explained in the previous subsection. In 
particular, for system B and C, we let a test 
expert provide the required training data, i.e., a 
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set of positive and negative test cases. We do 
not guide the tester in this process. The test 
experts are only given the information about a 
desired set size of at least 100 test cases for both 
sets and that both, positive and negative test 
sets should be of similar quantity. For system A, 
no expert was available and we had to provide 
training data on our own, which we further 
explain in the discussion for RQ3. 

As we use static data, i.e., are provided with a 
static set of test cases, requirements and 
failures, we are not able to detect new failures as 
test cases are not executed after prioritization. 
Hence, to compute an APFD value, we have to 
prepare the data set as follows: We split the set 
of failures in two subsets according to their age. 
Old failures are used for training, i.e., the failure 
content is available as features. New failures are 
used for testing, i.e., they are used for APFD 
computation only. The split is done in an uniform 
fashion, i.e., we split the failures in two sets of 
similar size where both sets contain about 50% 
of all failures. This allows us to test the approach 
based on unknown failures without influencing 
the trained model. 

To perform a more precise analysis of our 
approaches, we perform a k-fold cross validation 
[27] on our data sets. In particular, we split the 
set of test cases (comprising both positive and 
negative test sets) in k=10 folds. While k-1 folds 
are used for training, one fold is used for testing. 
The testing fold is the one used for APFD 
computation. Only failures linked to test cases, 
which are in the testing fold, are considered for 
APFD computation. Thus, we can make sure 
that for each repetition of our experiments a new 
set of “unknown” failures is used for APFD, 
which reflects the usage of our approach in a  
real-life scenario. The experiment is repeated k  
times, where the testing fold differs for each 
repetition to increase confidence in the results. 

We compute a random ordering of test cases 
100 times for each fold of our cross-validation as 
comparison. We average the results. 

5.4 Results and Discussion 

Results for RQ1. We analyze the performance 
of our test case prioritization approach using the 
APFD metric. In particular, we run a k-fold 
analysis for our three subject systems to assess 
the effectiveness of our approach compared to a 
random prioritization.  

For the first research question, we investigate 
how APFD is influenced when using the test 
case description feature in all combinations with 
other features compared to those feature 
combinations, which do not include the test case 
description. 

To give a more detailed sample, we show 
particular APFD results for all algorithms for 
system C in Fig.3 and Fig.4. Both figures show 
boxplots for the different runs of feature-
combinations for each technique. The plots show 
the median value (line in the middle of the box), 
the average value (only in Fig. 4, cross marker) 
and upper and lower quartiles (boxes above and 
below median) as well as the upper and lower 
boundary of APFD values achieved by each ML 
algorithm. 

In particular, the figures show a boxplot for the 
random approach, SVM rank (SVM), K-nearest 
neighbor (KNN), Logistic Regression (Log Reg), 
Neural Networks (Neural) and an ensemble of all 
four ML algorithms. We use boxplots as we 
repeated each technique for all different feature 
combinations, once with test case description 
(cf. Fig. 3) and without (cf. Fig. 4). 

The first thing we notice is that a random 
ordering produces an APFD of ~0.5. In contrast, 
most of the ML techniques produce better 
results. To answer our question, we first analyze 
the effectiveness when using the test case 
description feature as seen in Fig. 3. Here, 
logistic regression performs best of the isolated 
ML algorithms with an average APFD of 0.69. 
However, KNN only produces an average APFD 
of 0.44, which is worse than the random 
ordering. The best overall result is achieved 
when combining all four approaches, boosting 
yields an average APFD of ~0.71, i.e., it 
achieves the highest failure finding potential for 
this system.  

When analyzing the results displayed in Fig. 4, 
we notice that feature combinations, which do 
not include the test case description features do 
worse than their counterparts. For KNN, the 
APFD even drops below a random ordering. 
When the test case description is not available 
to the ML algorithms, the quality decreases. No 
algorithm was able to increase its average APFD 
without using the test case description. 

Tab. 2 shows an overview of all average APFD 
values achieved for all subject systems using the 
ML algorithms. We split the results for the feature 
combinations, which included the test case 
description and for those without. In addition, the 
average APFD value for each ML algorithm is 
shown. We mark the best APFD values for each 
system in bold font. As the results show, the 
results observed for system C reflect the results 
we gathered for all subject systems. While a 
random ordering was not able to produce good 
results, our applied ML approaches benefit from 
the usage of the test case description features 
significantly and are, sometimes, not effective 
without access to the description (e.g., KNN).  
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Tab. 2. APFD Overview for all three Subject Systems 
and their Overall Average Value 

S
y

s
te

m
 

Average APFD value with 
description 

SVM KNN Log 
Reg 

Neural Boost. 

A 0.68 0.69 0.75 0.7 0.72 

B 0.64 0.52 0.66 0.56 0.57 

C 0.68 0.44 0.69 0.63 0.7 

Avg. 0.67 0.55 0.7 0.63 0.66 
  

 Average APFD value without 
description 

A 0.44 0.27 0.47 0.48 0.4 

B 0.53 0.5 0.58 0.55 0.56 

C 0.58 0.42 0.56 0.5 0.51 

Avg. 0.52 0.4 0.54 0.51 0.49 

 

In terms of efficiency, the most demanding ML 
algorithm is neural network. For all features 
selected for our largest system (System C), we 
measure a training time of ~17.3 seconds. KNN 
is the fastest with about 2.1 seconds.  SVM 
produces a result after ~6.1 seconds and KNN 
takes 2.3 seconds. The subsequent prioritization 
is fast for either approach, it only takes 
milliseconds for each algorithm. These 
observations are equivalent for all subject 
systems. The test case description feature has 
the largest impact on the computational time due 
to the fact, that each word is a feature increasing 
the vector space up to 6400 features (cf. Tab. 1). 

Overall, logistic regression seems to be the best 
choice in when investigating effectiveness and 
efficiency in combination.  

Results for RQ2. To investigate research 
question 2, we apply all algorithms and their 
ensemble to all three subject systems. Tab. 2 
shows the average APFD results of all 
algorithms. We notice that logistic regression 
outperforms the other applied ML algorithms in 
System A and B in terms of effectiveness and is 

Fig. 3.  APFD Values for Evaluation Repetitions for System C with Description-Related Features 

Fig. 4. APFD Values for Evaluation Repetitions for System C without Description-Related Features 
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the second best choice in system C. This is the 
case for all combinations, i.e., with natural 
language artifacts and without. This shows that 
the performance of this algorithm is stable and, 
thus, the logistic regression seems to be a good 
choice for the test case prioritization approach. 

The boosting approach using all four algorithms 
at once outperforms the logistic regression only 
in System C with an average APFD of 0.7. Thus, 
the overhead of computing all four approaches 
seems not worth the effort compared to running 
logistic regression in isolation. However, it might 
be worth to investigate a weighted ensemble 
approach, where certain classifiers have a 
higher impact due to their produced quality [27]. 

Results for RQ3. While we had access to test 
experts for two subject systems, we had to train 
System A without the help of an expert, which is 
a restriction to our approach. Therefore, we aim 
to answer research question 3 using this system.  

To provide a meaningful training set without the 
help of an expert, we select test cases, which 
have found failures in the past to be of positive 
impact and, thus, be in the positive test set. The 
negative set contains only test cases without 
failures. Furthermore, for this particular project, 
each test case has a priority and severity value 
assigned on the 3-level scale by the designers. 
While these values are sufficient for test case 
selection, they are too coarse-grained to be used 
for prioritization. Thus, we use test cases with 
particular low priority and severity values as 
negative test cases. 

As the results in Tab. 2 indicate, the machine 
learning was able to produce a sophisticated test 
case order for System A, which outperforms the 
random ordering. Thus, we validate research 
question 2. It is possible to train our system 
without detailed expert knowledge. In particular, 
the logistic regression algorithm was able to 
produce good results, with an average APFD 
value of 0.75.  

We notice that it is necessary to provide certain 
data for training data without expert knowledge. 
Risk-based data, such as failure severity and 
impact, is useful to guide the training process, 
without focusing on experience. This is similar to 
risk-based testing [10]. 

5.5 Threats to Validity 

We aim to mitigate any negative effects, which 
might influence our evaluation results. While we 
have developed the tool on our own, which could 
have caused some faults in the code, we 
performed intense testing to ensure the correct 
functionality of our prototype and its 
parameterization.  

To increase the confidence in our results, we use 
three different case studies. Still, they all stem 
from the automotive industry, which could 
influence our findings. However, as different 
authors and testers maintain these systems and 
use them in a different context, we argue that our 
results show that our approach is applicable for 
different projects to improve a prioritization. 
Furthermore, we increase the trust in our results 
using k-fold cross validation. 

For our evaluation, we only use a subset of ML 
algorithms applicable to our problem. Other 
algorithms might improve the test case 
prioritization quality even further. To tackle this 
issue, we used four popular techniques, which 
already produce desirable results. While further 
improvement is possible, our algorithm selection 
already shows the potential of the test case 
prioritization concept in real-world testing 
scenarios. 

6. Related Work 

Regression testing has been widely discussed in 
literature. Yoo and Harman [29] provide a 
complex survey of minimization, selection and 
prioritization techniques. Khatibsyarbini et al. 
[16] show in their survey that the set of test case 
prioritization publications is still growing in recent 
years. However, the main focus of most test 
case prioritization approaches is still a code 
analysis for priority computation [16]. 

Machine learning has been used to improve 
white-box testing in the past. Analyzing the code 
leads to a wide range of fault prediction 
approaches, which has been surveyed by Catal 
[5]. However, white-box approaches require 
code access, e.g., to analyze modified code 
snippets for their test relevance. As code access 
is not available, we have to investigate black-box 
regression testing approaches in more detail. 

In terms of black-box regression testing, our 
previous work on black-box test case 
prioritization is most related to the concept 
presented in this work [19]. We used SVM Rank 
to compute priority values for natural language 
test cases. Khatibsyarbini et al. [16] show in their 
survey, that history and requirements-based 
approaches, which fall in the category of black-
box related techniques, still only share 18% of 
the total number of publications in novel test 
case prioritization approaches until 2017. 
Fazlalizadeh et al. [9] present a greedy 
technique to prioritize test cases based on 
system level test data, such as failure history. 
Engström et al. [7] have extended this approach 
by using, among others, static priority values. 
However, they could not find a significant 
improvement compared to the previous 
approach. Agarwal et al. [1] use two different ML 
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techniques as automated oracles in black-box 
testing. Their findings show that the quality is 
based on the amount of available data. In 
contrast to this work, they use program input and 
output as features. Bhasin and Khanna [4] use 
neural networks for black-box testing. Here, test 
cases are defined as module state diagrams. 
Thus, their approach is model-based in nature 
and not applicable in a system testing scenario 
without providing the necessary graphs. De 
Souza et al. [24] present a multi-objective test 
case prioritization based on two objectives: 
minimization of execution costs and 
requirements coverage. They apply particle 
swarm optimization to achieve their goal. Their 
results outperform a random approach. In 
previous work, we defined a multi-objective test 
case selection approach for black-box testing 
[18]. We define seven different objectives to be 
optimized using genetic algorithms. The 
approach is able to achieve good precision and 
recall for certain objective combinations. Yoo et 
al. [30] introduce a clustering approach for test 
case prioritization. They use dynamic execution 
traces as input. Human experts prioritize these 
clusters, which is similar to our idea to 
incorporate expert knowledge in the process of 
regression testing. 

7. Summary and Future Work 

Conclusion. In this paper, we present different 
ML-driven approaches for test case prioritization 
in black-box testing. We extend our previous 
technique [19] by including other ML algorithms 
beside SVM Rank [15]. Furthermore, we discuss 
the idea of ensemble learning-based test case 
prioritization, i.e., combining the output of 
different ML algorithms for one version or the 
output of one algorithm for several versions.  

We evaluated our approaches on three different 
subject systems, which stem from the 
automotive industry. We ran all four ML 
algorithms on all three systems and evaluated 
their effectiveness and efficiency. As baseline, 
we compared their performance against a 
randomized ordering. We are able to show that 
the natural language description of a test case is 
an important feature for test case prioritization, 
as it is able to increase the average APFD value 
for all ML algorithms on all subject systems. We 
also notice that, given certain meta-data, we are 
able to train the system without help of an expert. 

In total, we are able to state that our test case 
prioritization approaches are able to outperform 
a random ordering significantly. The best 
performance is achieved when using logistic 
regression [14], which is used for the first time in 
this paper to solve the test case prioritization 
problem based on natural language artifacts. 

Future Work. In our evaluation, we noticed a 
partial lack of traceability between artifacts, e.g. 
the link between failures and test cases is not 
always provided. The main reason for this issue 
is explorative testing, where testers do not 
strictly follow a protocol but rather test in a use-
case driven environment. An example for this are 
test drives in the automotive industry, where 
testing is performed in an ad-hoc fashion.  

The issue of missing traceability is reducing data 
quality and, therefore, the potential of our 
machine learning-driven test case prioritization 
approaches. Thus, we are investigating 
techniques, which are able to improve 
traceability in a semi-automatic fashion. By 
analyzing failures, we want to create automatic 
links to suitable test cases, which might have 
produced this failure. This improves data quality, 
test case coverage analysis and the potential for 
automatic test case prioritization. Furthermore, 
we want to investigate the potential of our 
historical ensemble approach to prioritize test 
cases. This requires a long-term evaluation 
setup, where different versions are tested in a 
live testing environment.  
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