
	 The European Test and Telemetry Conference – ettc2018	 300

DOI 10.5162/ettc2018/12.4

Machine Learning-Driven Test Case Prioritization
Approaches for Black-Box Software Testing

Remo Lachmann
IAV GmbH, Rockwellstraße 16, Gifhorn, Germany,

remo.lachmann@iav.de

Abstract

Regression testing is the task of retesting a software system after changes have occurred, e.g., after a
new version has been developed. Usually, only a subset of test cases is executed for a particular version
due to restricted resources. This poses the problem of identifying important test cases for testing.
Regression testing techniques such as test case prioritization have been introduced to guide the testing
process. Existing techniques usually require source code information. However, system testing of
complex applications often restricts access to the source code, i.e., they are a black-box. Here, a large
set of test cases is manually executed. In previous work, we proposed a test case prioritization technique
for system testing using supervised machine learning. We designed our approach to prioritize manually
executed test cases, i.e., it analyzes meta-data and natural language artifacts to compute test case
priority values. In this paper, we apply further machine learning algorithms and an ensemble learning
approach. In addition, we evaluate our approach on three different data sets in total, which all stem from
the automotive industry and, thus, represent real life regression testing data sets. We analyze the results
of our approach in terms of its failure finding potential. Our findings indicate that black-box testing can
be improved using machine learning techniques.

Key words: Test Case Prioritization, Black-Box Software Testing, Regression Testing, Machine
Learning, System Testing

1. Introduction

Modern software systems have to fulfill a large
set of requirements due to their complexity and
longevity. Thus, in the crucial phase of software
testing in a software engineering project, the
correspondence of the program behavior to its
requirements is assessed. The more complex
the system under test, the higher is the testing
effort, which takes up to 50% of all project
resources in software engineering [13].

While testing is an important task that is part of
most professional projects, it still has its
limitations. As the testing effort is larger than
available testing resources, testing has to be
focused on important aspects of the application,
which are likely to fail or are of high importance
for the overall functionality. However, especially
in black-box testing, the identification of
important test cases is non-trivial due to the lack
of source code availability [26]. White-box test
techniques are able to identify changes in the
software on code level, which can guide the
tester to changes, which should be retested in
regression testing.

In contrast, black-box testing is focused on the
integrated system [2]. Source code is not
available due to various reasons, e.g., contract

issues or the usage of precompiled components
such as libraries or components developed by
3rd party companies such as suppliers [26]. One
prime example of component-based
development is the automotive industry, where
different companies implement electronic control
units, which are later integrated as a whole. Most
regression testing techniques focus on source
code to select or prioritize test cases [29,16,5].
This reduces their applicability in black-box
testing.

To tackle the issue of black-box regression
testing, we introduced a regression testing
technique based on supervised machine
learning in previous work [19]. Our approach
prioritizes black-box test cases written in natural
language with the aim to emulate test experts
and, preferably, find failures as early as possible
in the testing process. It uses machine learning
(ML) algorithms to find patterns in existing data.
Previously, we evaluated our test case
prioritization approach using two case studies,
one from the automotive industry and one from
academia.

In this paper, we diversify and extend our
approach using additional ML algorithms to
prioritize black-box test cases, i.e., we introduce

	 The European Test and Telemetry Conference – ettc2018	 301

DOI 10.5162/ettc2018/12.4

the application of neural networks [12], k-nearest
neighbor (KNN) [27] and logistic regression [14].
We further extend our concept by combining the
output of several ML algorithms to create an
ensemble learner [27]. Furthermore, we extend
our evaluation to a total of three complex
industrial systems to make a more general
assumption about the effectiveness of our
approach. In total, we apply these techniques to
three industrial case studies, which provide
different features.

In summary, we make the following contributions
in this paper:

1. We extend our existing test case
prioritization approach by means of
additional ML algorithms, which are used in
isolation and as an ensemble. We are able
to show that our approach is flexible in terms
of applied algorithms.

2. We investigate the effectiveness of our
technique on three industrial, real-life
subject systems. While each system is a
software testing project, they are different in
nature. Our evaluation results indicate that
our approach is indeed applicable to a wide
range of projects.

The remainder of this paper is structured as
follows: We explain necessary background
knowledge in Section 2. Section 3 gives an
overview of our general test case prioritization
concept. In Section 4, we briefly introduce the
machine learning algorithms we apply in this
paper to perform a test case prioritization
approach. In Section 5, we describe our case
evaluation setup and results. We discuss related
work in Section 6. We conclude this paper and
give insights on future work in Section 7.

2. Background

In modern software engineering, testing is one of
the most important aspects to ensure software
quality [13]. Testing should commence as early
as possible and is an important part of each step
in the software development process [2].
Especially regression testing is of importance as
software development is not stopped after a
version has been finished, but rather developed
in a continuous fashion, going from one version
to the next [20]. Regression testing focuses on
the retest of already tested parts of a software
system to ensure that changes do not influence
previously implemented functionality [21]. To
ensure the correct behavior of a system after a
change, a full test is necessary, i.e., the
execution of each defined test case for each
version under test. However, full testing of a
software version is not feasible due to restricted
resources and complex software systems [7, 29].

To cope with limited testing resources, different
regression testing techniques have been
developed to reduce the number of test cases to
be executed. Most techniques are categorized
into test case prioritization, test case selection
and test case minimization approaches [29]. All
of these techniques are used to guide the focus
of the testing efforts. Each approach computes a
priority of each individual test case for a
particular software version under test based on
different criteria, e.g., changed code coverage
[16, 29]. While test case selection and
minimization aim to reduce the set of executed
test cases, e.g., by identifying redundancies, test
case prioritization aims to sort the test cases
according to their priority.

Prioritization of test cases has one advantage
over a selection: it allows continuous testing until
resources are exhausted or all test cases are
executed, while always focusing on the most
important test cases [22]. Test case selection, on
the other hand, still requires the full execution of
the selected set, which might still be very large.
Thus, we will focus on test case prioritization in
this paper. In particular, we aim to improve the
test case prioritization for black-box testing,
where no source code is available. This makes
regression testing far more difficult, as traditional
techniques analyze source code changes to
identify important test cases [7, 16, 29].

To tackle black-box regression testing, we
introduced a test case prioritization technique
[19] which, is based on ML. ML describes
techniques which are able to learn from a given
data set to extract information which is then
applicable to other data instances [11, 27]. ML
techniques are in particular useful for
optimization tasks, where a certain optimization
goal shall be reached in an efficient manner. ML
algorithms are plenty and usually require large
data sets to learn from, as this deduction step
generates the knowledge required to perform the
desired tasks on unknown data.

Different types of ML techniques exist. Two main
categories to distinguish algorithms are
supervised and unsupervised ML approaches
[27]. Both rely on the notion of training data, i.e.,
data instances provided to extract knowledge.
However, in supervised learning these instances
contain a label, i.e., their corresponding correct
output is pre-assigned, e.g., the correct class.
For instance, supervised ML techniques can
perform classification tasks, e.g., in spam
detection [3]. In contrast, unsupervised
techniques use unlabeled data. Clustering is one
type of an unsupervised approach, where
instances are grouped into clusters according to
their features [27].

	 The European Test and Telemetry Conference – ettc2018	 302

DOI 10.5162/ettc2018/12.4

These types of ML approaches have been
investigated for decades, and a wide range of
specific algorithms have been created to perform
specific ML tasks [11, 27]. To apply a specific ML
algorithm, the input data is converted into a
feature vector representation. Each feature is a
distinct characteristic, e.g., the sender of a spam
mail. The set of all features is a representation of
a specific data instance. Based on the feature
representation, ML algorithms aim to detect
patterns in the data. Examples are similarities
between instances, or the prediction of values,
e.g., to predict the cost of a house based on its
given features and the costs of other houses,
which is an example for a regression task.

ML algorithms can also be used together as an
ensemble learning approach [27]. Here, either
different types of algorithms can be combined
(stacking) or the same type of algorithm can be
trained with different input to create a boosting
approach using weak learners.

This paper focuses on supervised learning as we
aim to learn from expert knowledge to predict the
importance of new test cases. We also introduce
forms of ensemble learning for test case
prioritization.

3. Concept

The test case prioritization concept of this paper
is an extension of our previous work [19]. Fig. 1
illustrates a schematic overview of the main
phases of our test case prioritization approach.
We give a brief overview of the main steps of the
test case prioritization approach in the following.

Set of Positive

Test Cases

Set of Negative

Test Cases

Test Management

System

Test Expert

1..n Machine

Learning

Algorithm(s)

1..n Ranked

Classification

Model(s)

Set of

Unranked

Test Cases

Set of Positive

Test Cases

Set of Negative

Test Cases

Test Expert

1..n Machine

Learning

Algorithm(s)

Training

Set of

Ranked

Test Cases

1..n Ranked

Classification

Model(s)

Set of

Unranked

Test Cases

Set of

Ranked

Test Cases

Prioritization

Data Preparation

Fig. 1. Main Concept of the Black-Box Test Case
Prioritization using Machine Learning

As shown in Fig. 1, the data we use to perform a
test case prioritization is stored in a data
management system. We are not restricted to
specific types of data, database or system
domain. However, we assume to have access to
a defined set of test cases, a defined set of
requirements and a set of revealed failures. In
theory, each test case is linked to at least one
requirement, e.g., how a certain function shall
work. Failures, which have been revealed by a
test case, should be linked accordingly.
However, in practice this traceability is not
always given. For our approach, we assume that
the authors keep the data up to date and provide
traceability between related artifacts.

A test expert has to select a training set for the
ML algorithm. In particular, we require the expert
to select a set of positive test cases, i.e., test
cases which are of high importance, used
regularly or are for some other reason important
for the current version under test. To
complement this step, the expert provides a set
of negative test cases. These are off low
importance, e.g., as the particular functionality
has not been changed for many versions or is of
low risk. Our approach is based on the idea of
expert knowledge. Thus, we do not further
restrict this step, but let the tester decide about
the importance of particular test cases. While
this is a manually performed step, we only
require the expert to select a subset of test
cases.

The training data is used as input for a machine
learning algorithm. Our approach is compatible
to various ML algorithms, which have to fulfill the
following requirements:

� Supervised, as we want to emulate the
decisions made by test experts based
on two classes: to test and not to test

� Able to cope with large feature spaces
with sparse data

� Result is a ranked classification model,
i.e., an input value is provided with an
output value, representing its priority

After the training data is selected, we extract
features for test cases based on their meta-data,
e.g., title, number of linked requirements or
execution duration. In addition, we parse their
textual description, a novelty among regression
testing techniques [19]. Based on the latter, we
compute a dictionary of all words contained in
the test cases. We prepare the dictionary using
natural language processing [6], i.e.,
tokenization [25], stemming and removal of stop
words [28]. Each word represents a feature,
which makes the preprocessing useful to reduce
the vector space.

	 The European Test and Telemetry Conference – ettc2018	 303

DOI 10.5162/ettc2018/12.4

We are able to extract the following information
for black-box test case prioritization:

� Test case description (natural language)

� Test case age

� Number of linked requirements

� Number of linked defects (history)

� Severity of linked defects

� Test case execution cost (time)

� Project-specific features (e.g., market)

Furthermore, we can apply our approach to an
arbitrary set of features, which are used by the
human expert for test selection. Thus, the set of
features, which are considered as input for the
machine learning, is selected by an expert
before the learning phase commences. This is
important for project-specific features.

After the training data is transformed into a
feature representation, the ML algorithm
computes a ranked classification model.
Afterwards, we use this model to prioritize
arbitrary, unknown test cases. The result is an
ordered list of test cases according to their
priority value. The goal is to identify important
test cases with a higher likelihood to find failures.

4. Applied Algorithms

In this paper, we analyze the effectiveness of
four different supervised ML algorithms. In this
section, we give a brief overview of the applied
algorithms, but refer the reader to additional
literature on ML for a more in-depth
understanding of their inner workings, which is
out of scope for this paper [11, 27].

First, we apply ranked support vector machines
(SVM Rank) [15] to solve the test case
prioritization problem. We used this technique in
our previous work [19]. SVM Rank is able to
compute a ranked classification model even for
large feature vectors and provided good results
in previous work for black-box regression testing
[19]. Similar to normal SVMs, the algorithm
computes a hyperplane in the n-dimensional
feature vector space to create maximized margin
between two given classes according to their
labels.

The second algorithm we apply is K-Nearest-
Neighbor (KNN) [27]. KNN computes distances
between neighbor instances and computes a
value according to their labels. The constant k
defines the number of neighbors, which are
considered when computing the class of an
unknown instance. For our approach, we set k to
5 and use Euclidean distance as these
parameters provide the best results.

Third, we apply logistic regression (Log Reg)
[14]. This technique computes the probability
that a given entity belongs to a certain class by
fitting a logistic regression curve to the data and
performing a maximum likelihood estimation. We
use two classes, i.e., to test or not to test. Test
cases are ordered according to their probability
that they belong to the former category.

The fourth Ml algorithm we apply are neural
networks [12]. They imitate the human brain and
contain neurons, which are connected with each
other in a layered form. Each neuron might fire
given a certain input. We use two hidden layers
to solve black-box test case prioritization.

Our approach is able to use all of these
algorithms to compute priority (or probability)
values for an arbitrary set of test cases, which
indicate its importance for the particular system
under test. The higher the computed value, the
earlier the test case execution.

In addition to an isolated execution of the ML
algorithms, we define two more approaches
based on the idea of ensemble learning [27].
Here, the idea is to combine the results of
different algorithms or classifiers to create an
even more powerful ML approach. Hence, we
introduce historical and combinatorial ensemble
learning. Fig. 2 shows how n ML algorithms are
used to regression test m software versions
under test (VUT). The dotted lines represent
samples for our ensemble learning concepts.

Classifier

for VUT1

Classifier

for VUT1

Classifier

for VUT2

Classifier

for VUT2

Classifier

for VUTm

Classifier

for VUTm

Classifier

for VUT1

Classifier

for VUT2

Classifier

for VUTm

...

...

...

...

... ...

VUT1

VUT2

VUTm

Combinatinatorial Ensemble with Different Algorithms

H
isto

rica
l E

n
sem

b
le

 w
ith

 sa
m

e a
lg

o
rith

m

ML Algo. 1 ML Algo. 2 ML Algo. n

...

Fig. 2. Schematic Overview of Historical and
Combinatorial Ensemble Approaches

First, we introduce the idea of historical
ensemble learning of classifiers as indicated by
the vertical dotted line in Fig. 2. Assuming that a
software application is tested over the course of
several versions. For each version, a new
classifier can be trained by testers based on
previous findings. Thus, several classifiers exist.
Instead of always using the newest classifier, we
propose to combine the classifiers of the n latest

	 The European Test and Telemetry Conference – ettc2018	 304

DOI 10.5162/ettc2018/12.4

versions to combine their results and improve
the prioritization quality. Similar to the concept of
boosting [27], we use classifiers of the same
type, e.g., only neural networks. Consequently,
old classifiers are not dispensed but reused. The
impact on the result could be identical or decline
with their age, i.e., version number.

Our second ensemble learning approach is to
consider a set of classifiers for the same version
as indicated by the vertical line in the first row in
Fig. 2. Here, we combine the results of (a subset
of) n different algorithms, e.g., neural networks,
SVM, KNN and logistic regression. This
combinatorial approach is similar to the concept
of stacking [27]. When classifying test cases with
each of these classifiers, we are able to combine
the given priority values for a given test case and
compute its average priority value. This provides
an overall list for all test cases, which is adjusted
according to all classifiers involved. This
technique is flexible in terms of what classifiers
to apply.

5. Evaluation

One of the main aspects of this paper is an
analysis of the practical applicability of our test
case prioritization approach. We implemented a
prototype using the Dlib.net ML framework [17]
and the Accord.Net ML framework [23].

In this paper, we extend our previous evaluation
to a total of three industrial subject systems,
dropping the academic system. To perform a
structured quality assessment, we first describe
our research question. Next, the subject systems
are explained. Afterwards, we go into detail
about the evaluation methodology. Next, we
present and discuss the results for all three
systems. An assessment of potential threats to
validity concludes this section.

5.1 Research Questions

For our evaluation, we formulate the following
three research questions, which we aim to
answer in this paper:

RQ1: What is the impact of the test case
description features on the quality of the different
algorithms?

RQ2: Is there one particular ML algorithm, which
is the best choice for black-box test case
prioritization?

RQ3: Is it possible to train the system without the
help of an expert to achieve satisfying results?

5.2 Subject Systems

In total, we assess our approach using three
different subject systems. All three systems stem
from the automotive domain. Compared to our
previous work, we are able to assess the

technique’s applicability for real-life data on a
larger scale. Due to legal restrictions, we refer to
the systems as System A, B and C. Each system
describes different types of software testing
projects and they involve different authors and
stakeholders. We give a basic overview of the
size of the three systems in Tab. 1. The table
contains the number test cases, which are
available for each project, the number of positive
(#Pos TC) and negative (#Neg TC) test cases
used for training, the number of failures (#F)
linked to the training set as well as the vector
size, i.e., the number of features extracted. We
only use the linked failures in the training data
later for evaluation.

Tab. 1. Subject System Overview

ID #Total
TC

#Pos
TC

#Neg
TC

#F Vector
Size

A ~1700 111 115 133 ~1500

B ~2400 493 278 86 ~3150

C >10.000 213 133 26 ~6400

The three subject systems focus on different
software systems and are written by different
persons, leading to a high variety on data
quantity, quality and content. They even vary in
their provided meta-data, i.e., some have user-
defined features such as “release market”. Our
test case prioritization approach is able to handle
different data artifacts, i.e., types of meta-data
[19]. Thus, we are still able to apply the
prioritization to these different projects, even
though they do not provide the same features.

5.3 Methodology

Our technique aims to provide priority values to
perform a guided test case prioritization. Thus,
we aim to assess if our technique is indeed able
to improve regression testing in terms of
effectiveness. In science, this is measured using
one particular metric: Average Percentage of
Faults Detected (APFD) [22]. It computes how
fast a set f of m failures is covered by n test
cases. It returns a value between 0 and 1,
whereas 1 is the theoretical optimum and, thus,
the best value. In other words, a higher value
indicates that failure revealing test cases are
executed first according to the computed priority.

Formally, APFD is defined as follows [22]:

���� = 1 −
∑ ���

�
���

�∙�
+

�

��

We measure APFD for all three different subject
systems explained in the previous subsection. In
particular, for system B and C, we let a test
expert provide the required training data, i.e., a

	 The European Test and Telemetry Conference – ettc2018	 305

DOI 10.5162/ettc2018/12.4

set of positive and negative test cases. We do
not guide the tester in this process. The test
experts are only given the information about a
desired set size of at least 100 test cases for both
sets and that both, positive and negative test
sets should be of similar quantity. For system A,
no expert was available and we had to provide
training data on our own, which we further
explain in the discussion for RQ3.

As we use static data, i.e., are provided with a
static set of test cases, requirements and
failures, we are not able to detect new failures as
test cases are not executed after prioritization.
Hence, to compute an APFD value, we have to
prepare the data set as follows: We split the set
of failures in two subsets according to their age.
Old failures are used for training, i.e., the failure
content is available as features. New failures are
used for testing, i.e., they are used for APFD
computation only. The split is done in an uniform
fashion, i.e., we split the failures in two sets of
similar size where both sets contain about 50%
of all failures. This allows us to test the approach
based on unknown failures without influencing
the trained model.

To perform a more precise analysis of our
approaches, we perform a k-fold cross validation
[27] on our data sets. In particular, we split the
set of test cases (comprising both positive and
negative test sets) in k=10 folds. While k-1 folds
are used for training, one fold is used for testing.
The testing fold is the one used for APFD
computation. Only failures linked to test cases,
which are in the testing fold, are considered for
APFD computation. Thus, we can make sure
that for each repetition of our experiments a new
set of “unknown” failures is used for APFD,
which reflects the usage of our approach in a
real-life scenario. The experiment is repeated k
times, where the testing fold differs for each
repetition to increase confidence in the results.

We compute a random ordering of test cases
100 times for each fold of our cross-validation as
comparison. We average the results.

5.4 Results and Discussion

Results for RQ1. We analyze the performance
of our test case prioritization approach using the
APFD metric. In particular, we run a k-fold
analysis for our three subject systems to assess
the effectiveness of our approach compared to a
random prioritization.

For the first research question, we investigate
how APFD is influenced when using the test
case description feature in all combinations with
other features compared to those feature
combinations, which do not include the test case
description.

To give a more detailed sample, we show
particular APFD results for all algorithms for
system C in Fig.3 and Fig.4. Both figures show
boxplots for the different runs of feature-
combinations for each technique. The plots show
the median value (line in the middle of the box),
the average value (only in Fig. 4, cross marker)
and upper and lower quartiles (boxes above and
below median) as well as the upper and lower
boundary of APFD values achieved by each ML
algorithm.

In particular, the figures show a boxplot for the
random approach, SVM rank (SVM), K-nearest
neighbor (KNN), Logistic Regression (Log Reg),
Neural Networks (Neural) and an ensemble of all
four ML algorithms. We use boxplots as we
repeated each technique for all different feature
combinations, once with test case description
(cf. Fig. 3) and without (cf. Fig. 4).

The first thing we notice is that a random
ordering produces an APFD of ~0.5. In contrast,
most of the ML techniques produce better
results. To answer our question, we first analyze
the effectiveness when using the test case
description feature as seen in Fig. 3. Here,
logistic regression performs best of the isolated
ML algorithms with an average APFD of 0.69.
However, KNN only produces an average APFD
of 0.44, which is worse than the random
ordering. The best overall result is achieved
when combining all four approaches, boosting
yields an average APFD of ~0.71, i.e., it
achieves the highest failure finding potential for
this system.

When analyzing the results displayed in Fig. 4,
we notice that feature combinations, which do
not include the test case description features do
worse than their counterparts. For KNN, the
APFD even drops below a random ordering.
When the test case description is not available
to the ML algorithms, the quality decreases. No
algorithm was able to increase its average APFD
without using the test case description.

Tab. 2 shows an overview of all average APFD
values achieved for all subject systems using the
ML algorithms. We split the results for the feature
combinations, which included the test case
description and for those without. In addition, the
average APFD value for each ML algorithm is
shown. We mark the best APFD values for each
system in bold font. As the results show, the
results observed for system C reflect the results
we gathered for all subject systems. While a
random ordering was not able to produce good
results, our applied ML approaches benefit from
the usage of the test case description features
significantly and are, sometimes, not effective
without access to the description (e.g., KNN).

	 The European Test and Telemetry Conference – ettc2018	 306

DOI 10.5162/ettc2018/12.4

Tab. 2. APFD Overview for all three Subject Systems
and their Overall Average Value

S
y

s
te

m

Average APFD value with
description

SVM KNN Log
Reg

Neural Boost.

A 0.68 0.69 0.75 0.7 0.72

B 0.64 0.52 0.66 0.56 0.57

C 0.68 0.44 0.69 0.63 0.7

Avg. 0.67 0.55 0.7 0.63 0.66

 Average APFD value without
description

A 0.44 0.27 0.47 0.48 0.4

B 0.53 0.5 0.58 0.55 0.56

C 0.58 0.42 0.56 0.5 0.51

Avg. 0.52 0.4 0.54 0.51 0.49

In terms of efficiency, the most demanding ML
algorithm is neural network. For all features
selected for our largest system (System C), we
measure a training time of ~17.3 seconds. KNN
is the fastest with about 2.1 seconds. SVM
produces a result after ~6.1 seconds and KNN
takes 2.3 seconds. The subsequent prioritization
is fast for either approach, it only takes
milliseconds for each algorithm. These
observations are equivalent for all subject
systems. The test case description feature has
the largest impact on the computational time due
to the fact, that each word is a feature increasing
the vector space up to 6400 features (cf. Tab. 1).

Overall, logistic regression seems to be the best
choice in when investigating effectiveness and
efficiency in combination.

Results for RQ2. To investigate research
question 2, we apply all algorithms and their
ensemble to all three subject systems. Tab. 2
shows the average APFD results of all
algorithms. We notice that logistic regression
outperforms the other applied ML algorithms in
System A and B in terms of effectiveness and is

Fig. 3. APFD Values for Evaluation Repetitions for System C with Description-Related Features

Fig. 4. APFD Values for Evaluation Repetitions for System C without Description-Related Features

	 The European Test and Telemetry Conference – ettc2018	 307

DOI 10.5162/ettc2018/12.4

the second best choice in system C. This is the
case for all combinations, i.e., with natural
language artifacts and without. This shows that
the performance of this algorithm is stable and,
thus, the logistic regression seems to be a good
choice for the test case prioritization approach.

The boosting approach using all four algorithms
at once outperforms the logistic regression only
in System C with an average APFD of 0.7. Thus,
the overhead of computing all four approaches
seems not worth the effort compared to running
logistic regression in isolation. However, it might
be worth to investigate a weighted ensemble
approach, where certain classifiers have a
higher impact due to their produced quality [27].

Results for RQ3. While we had access to test
experts for two subject systems, we had to train
System A without the help of an expert, which is
a restriction to our approach. Therefore, we aim
to answer research question 3 using this system.

To provide a meaningful training set without the
help of an expert, we select test cases, which
have found failures in the past to be of positive
impact and, thus, be in the positive test set. The
negative set contains only test cases without
failures. Furthermore, for this particular project,
each test case has a priority and severity value
assigned on the 3-level scale by the designers.
While these values are sufficient for test case
selection, they are too coarse-grained to be used
for prioritization. Thus, we use test cases with
particular low priority and severity values as
negative test cases.

As the results in Tab. 2 indicate, the machine
learning was able to produce a sophisticated test
case order for System A, which outperforms the
random ordering. Thus, we validate research
question 2. It is possible to train our system
without detailed expert knowledge. In particular,
the logistic regression algorithm was able to
produce good results, with an average APFD
value of 0.75.

We notice that it is necessary to provide certain
data for training data without expert knowledge.
Risk-based data, such as failure severity and
impact, is useful to guide the training process,
without focusing on experience. This is similar to
risk-based testing [10].

5.5 Threats to Validity

We aim to mitigate any negative effects, which
might influence our evaluation results. While we
have developed the tool on our own, which could
have caused some faults in the code, we
performed intense testing to ensure the correct
functionality of our prototype and its
parameterization.

To increase the confidence in our results, we use
three different case studies. Still, they all stem
from the automotive industry, which could
influence our findings. However, as different
authors and testers maintain these systems and
use them in a different context, we argue that our
results show that our approach is applicable for
different projects to improve a prioritization.
Furthermore, we increase the trust in our results
using k-fold cross validation.

For our evaluation, we only use a subset of ML
algorithms applicable to our problem. Other
algorithms might improve the test case
prioritization quality even further. To tackle this
issue, we used four popular techniques, which
already produce desirable results. While further
improvement is possible, our algorithm selection
already shows the potential of the test case
prioritization concept in real-world testing
scenarios.

6. Related Work

Regression testing has been widely discussed in
literature. Yoo and Harman [29] provide a
complex survey of minimization, selection and
prioritization techniques. Khatibsyarbini et al.
[16] show in their survey that the set of test case
prioritization publications is still growing in recent
years. However, the main focus of most test
case prioritization approaches is still a code
analysis for priority computation [16].

Machine learning has been used to improve
white-box testing in the past. Analyzing the code
leads to a wide range of fault prediction
approaches, which has been surveyed by Catal
[5]. However, white-box approaches require
code access, e.g., to analyze modified code
snippets for their test relevance. As code access
is not available, we have to investigate black-box
regression testing approaches in more detail.

In terms of black-box regression testing, our
previous work on black-box test case
prioritization is most related to the concept
presented in this work [19]. We used SVM Rank
to compute priority values for natural language
test cases. Khatibsyarbini et al. [16] show in their
survey, that history and requirements-based
approaches, which fall in the category of black-
box related techniques, still only share 18% of
the total number of publications in novel test
case prioritization approaches until 2017.
Fazlalizadeh et al. [9] present a greedy
technique to prioritize test cases based on
system level test data, such as failure history.
Engström et al. [7] have extended this approach
by using, among others, static priority values.
However, they could not find a significant
improvement compared to the previous
approach. Agarwal et al. [1] use two different ML

	 The European Test and Telemetry Conference – ettc2018	 308

DOI 10.5162/ettc2018/12.4

techniques as automated oracles in black-box
testing. Their findings show that the quality is
based on the amount of available data. In
contrast to this work, they use program input and
output as features. Bhasin and Khanna [4] use
neural networks for black-box testing. Here, test
cases are defined as module state diagrams.
Thus, their approach is model-based in nature
and not applicable in a system testing scenario
without providing the necessary graphs. De
Souza et al. [24] present a multi-objective test
case prioritization based on two objectives:
minimization of execution costs and
requirements coverage. They apply particle
swarm optimization to achieve their goal. Their
results outperform a random approach. In
previous work, we defined a multi-objective test
case selection approach for black-box testing
[18]. We define seven different objectives to be
optimized using genetic algorithms. The
approach is able to achieve good precision and
recall for certain objective combinations. Yoo et
al. [30] introduce a clustering approach for test
case prioritization. They use dynamic execution
traces as input. Human experts prioritize these
clusters, which is similar to our idea to
incorporate expert knowledge in the process of
regression testing.

7. Summary and Future Work

Conclusion. In this paper, we present different
ML-driven approaches for test case prioritization
in black-box testing. We extend our previous
technique [19] by including other ML algorithms
beside SVM Rank [15]. Furthermore, we discuss
the idea of ensemble learning-based test case
prioritization, i.e., combining the output of
different ML algorithms for one version or the
output of one algorithm for several versions.

We evaluated our approaches on three different
subject systems, which stem from the
automotive industry. We ran all four ML
algorithms on all three systems and evaluated
their effectiveness and efficiency. As baseline,
we compared their performance against a
randomized ordering. We are able to show that
the natural language description of a test case is
an important feature for test case prioritization,
as it is able to increase the average APFD value
for all ML algorithms on all subject systems. We
also notice that, given certain meta-data, we are
able to train the system without help of an expert.

In total, we are able to state that our test case
prioritization approaches are able to outperform
a random ordering significantly. The best
performance is achieved when using logistic
regression [14], which is used for the first time in
this paper to solve the test case prioritization
problem based on natural language artifacts.

Future Work. In our evaluation, we noticed a
partial lack of traceability between artifacts, e.g.
the link between failures and test cases is not
always provided. The main reason for this issue
is explorative testing, where testers do not
strictly follow a protocol but rather test in a use-
case driven environment. An example for this are
test drives in the automotive industry, where
testing is performed in an ad-hoc fashion.

The issue of missing traceability is reducing data
quality and, therefore, the potential of our
machine learning-driven test case prioritization
approaches. Thus, we are investigating
techniques, which are able to improve
traceability in a semi-automatic fashion. By
analyzing failures, we want to create automatic
links to suitable test cases, which might have
produced this failure. This improves data quality,
test case coverage analysis and the potential for
automatic test case prioritization. Furthermore,
we want to investigate the potential of our
historical ensemble approach to prioritize test
cases. This requires a long-term evaluation
setup, where different versions are tested in a
live testing environment.

Acknowledgements

The author thanks Antony Beno Louison
Jayapathy for fruitful discussions and his help
with the realization of the presented concept.

References

[1] D. Agarwal, D. E. Tamir, M. Last and A. Kandel.
A Comparative Study of Artificial Neural
Networks and Info-Fuzzy Networks as Automated
Oracles in Software Testing," in IEEE
Transactions on Systems, Man, and Cybernetics
- Part A: Systems and Humans, vol. 42, no. 5, pp.
1183-1193, 2012: doi:
10.1109/TSMCA.2012.2183590

[2] P. Ammann and J. Offutt. Introduction to
Software Testing (1 ed.). Cambridge University
Press, New York, NY, USA, 2008.
ISBN: 978-0521880381

[3] F. Benevenuto , G. Magno , T. Rodrigues , V.
Almeida. Detecting Spammers on Twitter.
Proceedings - Collaboration, Electronic
messaging, Anti-Abuse and Spam Conference
(CEAS), 2010. doi:10.1.1.297.5340

[4] H. Bhasin and E. Khanna. Neural network based
black box testing. SIGSOFT Softw. Eng. Notes
39 - 2, 2014, pp. 1-6.
doi: 10.1145/2579281.2579292

[5] C. Catal, Software fault prediction: A literature
review and current trends, Expert Systems with
Applications, Volume 38, Issue 4, 2011, pp.
4626-4636, doi:10.1016/j.eswa.2010.10.024

[6] G. G. Chowdhury . Natural language processing.
Annual review of information science and
technology, 37(1), 2003, pp. 51-89.
doi: 10.1002/aris.1440370103

	 The European Test and Telemetry Conference – ettc2018	 309

DOI 10.5162/ettc2018/12.4

[7] E. Engström, P. Runeson and A. Ljung,
"Improving Regression Testing Transparency and
Efficiency with History-Based Prioritization -- An
Industrial Case Study," 2011 Fourth IEEE
International Conference on Software Testing,
Verification and Validation, 2011, pp. 367-376.
doi: 10.1109/ICST.2011.27

[8] G. Erdogan, Y. Li , R.K. Runde et al. Int. Journal
on Software Tools Technology Transfer, 2014,
16: 627. doi: 10.1007/s10009-014-0330-5

[9] Y. Fazlalizadeh, A. Khalilian, M. A. Azgomi and
S. Parsa, "Prioritizing test cases for resource
constraint environments using historical test case
performance data," 2009 2nd IEEE International
Conference on Computer Science and
Information Technology, 2009, pp. 190-195.
doi: 10.1109/ICCSIT.2009.5234968

[10] M. Felderer and I. Schieferdecker. 2014. A
taxonomy of risk-based testing. Int. J. Softw.
Tools Technol. Transf. 16 - 5, 2014, pp. 559-568.
doi:10.1007/s10009-014-0332-3

[11] A. Géron. Hands-on machine learning with Scikit-
Learn and TensorFlow: concepts, tools, and
techniques to build intelligent systems. O'Reilly
Media, Inc., 2017. ISBN: 978-1491962299

[12] I. Goodfellow, Y.Bengio, A. Courville, “Deep
learning”. Vol. 1. Cambridge: MIT press, 2016.
ISBN: 0262035618

[13] M. J. Harrold, Testing: a roadmap. In
Proceedings of the Conference on The Future of
Software Engineering (ICSE), 2000, ACM, pp.
61-72. doi: 10.1145/336512.336532

[14] D. W. Hosmer Jr., S. Lemeshow, and R. X.
Sturdivant. Applied logistic regression. Vol. 398.
John Wiley & Sons, 2013.
doi:10.1002/9781118548387

[15] T. Joachims, “Optimizing search engines using
clickthrough data”. In Proceedings of the eighth
ACM SIGKDD international conference on
Knowledge discovery and data mining (KDD '02).
ACM, pp. 133-142. doi: 10.1145/775047.775067

[16] M. Khatibsyarbini, M. Adham Isa, D. N.A. Jawawi,
R. Tumeng, Test case prioritization approaches
in regression testing: A systematic literature
review, Information and Software Technology,
Vol. 93, 2018, pp. 74-93.
doi: 10.1016/j.infsof.2017.08.014

[17] D. E. King. 2009. Dlib-ml: A Machine Learning
Toolkit. J. Mach. Learn. Res. 10 (December
2009), pp. 1755-1758.
doi: 10.1145/1577069.1755843

[18] R. Lachmann, M. Felderer, M. Nieke, S. Schulze,
C. Seidl, and I. Schaefer. Multi-objective black-
box test case selection for system testing. In
Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO '17). ACM,
2017 pp. 1311-1318.
doi: 10.1145/3071178.3071189

[19] R. Lachmann, S. Schulze, M. Nieke, C. Seidl and
I. Schaefer, "System-Level Test Case

Prioritization Using Machine Learning," 2016 15th
IEEE International Conference on Machine
Learning and Applications (ICMLA), 2016, pp.
361-368. doi: 10.1109/ICMLA.2016.0065

[20] M. M. Lehman, "Programs, life cycles, and laws
of software evolution," in Proceedings of the
IEEE, vol. 68, no. 9, 1980, pp. 1060-1076.
doi: 10.1109/PROC.1980.11805

[21] H. K. N. Leung and L. White, "Insights into
regression testing (software testing),"
Proceedings. Conference on Software
Maintenance, 1989, pp. 60-69.
doi: 10.1109/ICSM.1989.65194

[22] G. Rothermel, R. H. Untch, Chengyun Chu and
M. J. Harrold, "Prioritizing test cases for
regression testing," in IEEE Transactions on
Software Engineering, vol. 27, no. 10, pp. 929-
948, 2001. doi: 10.1109/32.962562

[23] C. R. Souza, "The Accord.NET Framework,"
http://accord-framework.net . São Carlos, Brazil.
2014.

[24] S. de Souza, Luciano & Miranda, Péricles &
Prudêncio, Ricardo & Barros, Flávia. A Multi-
Objective Particle Swarm Optimization for Test
Case Selection Based on Functional
Requirements Coverage and Execution Effort.
Proceedings - International Conference on Tools
with Artificial Intelligence, ICTAI. pp. 245-252,
2011. doi: 10.1109/ICTAI.2011.45.

[25] J. J. Webster and C. Kit. Tokenization as the
initial phase in NLP. In Proceedings of the 14th
conference on Computational linguistics - Volume
4 (COLING), Vol. 4., 1992, pp. 1106-1110. doi:
10.3115/992424.992434

[26] E. J. Weyuker, "Testing component-based
software: a cautionary tale," in IEEE Software,
vol. 15, no. 5, pp. 54-59, 1998.
doi: 10.1109/52.714817

[27] I. H. Witten, E. Frank, and M. A. Hall. 2017. Data
Mining: Practical Machine Learning Tools and
Techniques (4th ed.). Morgan Kaufmann
Publishers Inc. ISBN: 978-0-12-804291-5

[28] Z. Yao and C. Ze-wen, "Research on the
Construction and Filter Method of Stop-word List
in Text Preprocessing," 2011 Fourth International
Conference on Intelligent Computation
Technology and Automation, Shenzhen,
Guangdong, 2011, pp. 217-221.
doi: 10.1109/ICICTA.2011.64

[29] S. Yoo and M. Harman, Regression testing
minimization, selection and prioritization: a
survey. Softw. Test. Verif. Reliab., 22: pp. 67-
120, 2012. doi:10.1002/stvr.430

[30] S. Yoo, M. Harman, P. Tonella, and A. Susi.
Clustering test cases to achieve effective and
scalable prioritisation incorporating expert
knowledge. In Proceedings of the eighteenth
international symposium on Software testing and
analysis (ISSTA). ACM, pp. 201-212, 2009.
doi: 10.1145/1572272.1572296

	1. Sensors
	1.1
	1.4
	1.7

	2. Modulation & Coding
	2.1
	2.2
	2.3
	2.4

	3. Data Management Standards
	3.1
	3.2
	3.3

	4. RF Design
	4.1
	4.2
	4.3

	5. Time-Space position technoligies
	5.1
	5.2
	5.3

	6. Network & Architectures
	6.1
	6.2

	7. AIM 2018
	7.1
	7.2
	7.3
	7.4

	8. Spectrum Efficiency
	8.1
	8.2
	8.3
	8.4

	9. Data Acquision
	9.1
	9.2
	9.3
	9.4
	9.5

	10. Imaging & Video
	10.1
	10.2
	10.3
	10.4
	10.5

	11. Network & Data acquisition
	11.1
	11.2
	11.3
	11.4
	11.5
	11.6

	12. Data Management Applications
	12.1
	12.2
	12.3
	12.4
	12.5

