2D SnX₂ (X=S, Se) Based Heterojunctions for NO₂ Sensing at Low Temperatures Xiaogan Li*, Ding Gu, Xinyu Li, Xueyan Wang, Tingting He Dalian University of Technology, School of Microelectronics, Dalian, P.R.China Corresponding author's e-mail address: lixg@dlut.edu.cn #### Abstract: Two dimensional nanomaterials (2D) SnX_2 (X=S, Se) based chemiresistive-type sensors was investigated for detecting NO_2 at low temperatures. It was found that SnO_2 nanocrystal-dotted SnS_2 heterojunctions formed by in-situ thermal oxidation in a controlled environment indicated a good sensitivity and selectivity to NO_2 at 80 °C. The lower operating temperature was attributed to enhanced catalytic properties to NO_2 by the SnO_2 nanocrystals. With the replacement of S by Se in SnX_2 compound, the working temperature of SnX_2 based NO_2 sensor could be further decreased significantly to near room temperature. Theoretical calculation according to Density-Function-Theory (DFT) indicates that $SnSe_2$ has a higher NO_2 adsorption ability compared to SnS_2 . Key words: 2D nanomaterials, SnS₂ and SnSe₂, NO₂ Sensor, SnO₂/SnS₂ heterojunctions ### Introduction A low-cost reliable chemical gas sensor for timely monitoring the pollutant gases in ambient is highly demanded for people to be aware of or obtain the more detail information on these pollutant gas concentrations [1]. Compared to graphene that is lack of the band gap, metal dichalcogenides seem more advantageous because of its adjustable narrow bandgap and replaceable metal cations and X anions in the compounds which would result to the variable photo- and electronic properties [2-5]. For example, among the metal dichalcogenides, MoS₂ is one of the most investigated MX₂ compounds. In particular for chemical gas sensors, it demonstrated a good sensitivity to several typical harmful or toxic gases such as and triethylamine NH_3 at room temperature. However, the response and recovery speeds are usually slow. Nevertheless, with the substitution of the S in MoS₂ by Se that has a larger ion radius, the MoSe₂ based chemirestive sensor indicates a much improved response time [6]. The elemental X in the 2D MX₂ compounds clearly has a significant influence on the gas sensing properties. In this work, the gas sensing properties of the layered SnX_2 (X=S, Se) nanoflakes have been investigated. The SnX₂ based chemiresistive sensor shows a good response to NO2 at a significantly decreased temperature even down to 30°C. A full faster recovery of the 2D MX₂ based NO₂ sensor was achieved. # **Experimental** The SnS₂ and SnSe₂ nanomaterial was purchased commercially. To obtain SnO₂/SnX₂ heterojunctions, the SnX₂ samples synthesized by the in-situ temperature oxidation method in a controlled oxygen environment. The samples were characterized by SEM, TEM, XPS. The gas sensing properties of the sensors were measured by using fully computer controlled gas mixing and data acquisition systems under dynamic gas flow region. The sensor response to NO₂ was defined as the relative change of the resistance in NO₂ to the one in Air. The density function theory (DFT) was used to calculate the gas adsorption energy on these 2D materials. #### **Results and Discussion** Fig.1 shows the SEM images of the SnS_2 , SnO_2/SnS_2 and $SnSe_2$ nanoflakes. All indicate a flake-like morphology. The SnO_2 nanocrystals are clearly observed for the SnO_2/SnS_2 heterojunction sample. Fig.2 shows the XPS of the samples. The existence of SnO_2 in the SnO_2/SnS_2 heterojunctions was confirmed as shown in Fig.2a. Fig.2b shows that with addition of SnO_2 , the adsorbed O_2 on the surface increased. The small amount of adsorbed O_2 on pure SnS₂ may be induced by the S vacancies. Fig.2c confirms again the composition of SnSe₂. Fig.1.Morphology of (a) SnS₂; (b) SnO₂/SnS₂; (c) SnSe₂. Fig.2.XPS of (a-b) SnS2 and SnO2/SnS2; (c-d) SnSe2. Fig.3 shows the sensing performance of SnS_2 , SnO_2/SnS_2 and $SnSe_2$ based chemiresistive-type gas sensors to NO_2 . Fig.3a-b shows that with the in-situ formed SnO_2 nanocrystals on SnS_2 flakes, the operating temperature of the sensor can be lowered. This can be attributed the extra attraction of oxygen on the surface of the SnO_2/SnS_2 heterojunctions (as confirmed in Fig.2b). The adsorbed oxygen can help enhancing the extra response through the conventional redox reactions between NO_2 and O_2 . Moreover, as displayed in Fig.3c, the SnO₂/SnS₂ heterojunction based sensor indicates an excellent selectivity to several typical gases such as alcohols, formaldehyde, acetone and methylbenzene. As the replacement of S in SnX_2 compound by Se, the $SnSe_2$ nanoflakes based sensor exhibited a room temperature response to NO_2 with a fast response and full recovery within 1-2 minutes as shown in Fig.3d-e. The sensor also demonstrated a good selectivity (Fig.3f). Table 1 summarizes the comparison of the sensing features of these series of SnX_2 compounds. The calculation using density function theory indicates that $SnSe_2$ has a larger adsorption energy relative to SnS_2 . Fig. 3. (a-b) Comparison of response of SnO_2/SnS_2 oxidized for different times to NO_2 at 80 °C; (c) Selectivity of SnO_2/SnS_2 based NO_2 sensor; (d) Temperature-dependent response, (e) Response curve and (f) Selectivity of $SnSe_2$ based sensor to NO_2 at 30 °C. In Summary, SnX_2 and its formed heterojunctions could be tuned systematically to achieve a low temperature NO_2 sensor with a good recovery feature. These sensing materials also indicated an excellent selectivity. Table 1 Comparison of sensing properties of SnX_2 (X=O, S, Se) 2D nanomaterials based chemiresistive sensors. | 2D Materials | Eg | Temp. | Target Gases | Res./Rec. Time | Selectivity | Refs. | |------------------------------------|--------|--------|-------------------|----------------|-------------|-----------| | SnO ₂ | 3.5 eV | 200°C | NO ₂ , | <1 minute | - | [1] | | SnS ₂ | 2.1eV | 120 °C | NO ₂ | ~2 minutes | Good | [2] | | SnO ₂ /SnS ₂ | - | 80 °C | NO ₂ | ~3-4 minutes | Good | [4] | | SnSe ₂ | 1.1eV | 30 °C | NO ₂ , | ~1-2 minutes | Good | This work | ## References - [1] D. R. Miller, S. A. Akbar, P. A. Morris, Nanoscale metal oxide-based heterojunctions for gas sensing: a review, Sens. Actuators B 204 (2014) 250-272. doi: 10.1016/j.snb.2014.07.074 - [2] Ou et al., Physisorption-based charge transfer in two-dimensional SnS₂ for selective and reversible NO₂ gas sensing, ACS nano. 9, 10313-10323 (2015); doi: 10.1021/acsnano.5b04343 - [3] Kim et al., Ultrasensitive reversible oxygen sensing by using liquid-exfoliated MoS₂ nanoparticles, J. Mater. Chem. A 4, 6070-6076 (2016); doi: 10.1039/C6TA01277A - [4] Gu et al., Enhanced NO₂ Sensing of SnO₂/SnS₂ Heterojunction Based Sensor, Sens. Actuators B 244, 67–76 (2017); doi: 10.1016/j.snb.2016.12.125 - [5] Gu et al., Light enhanced VOCs sensing of WS₂ microflakes based chemiresistive sensors powered by triboelectronic nanogenerators, Sens. Actuators B 256, 992-1000 (2018); doi: 10.1016/j.snb.2017.10.045 - [6] Liu et al., Two-Dimensional Nanostructured Materials for Gas Sensing, Adv. Funct. Mater. 27, 1702168 (2017); doi: 10.1002/adfm.201702168